Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34445288

RESUMO

Inflammatory Breast Cancer (IBC) is an aggressive form of invasive breast cancer, highly metastatic, representing 2-4% of all breast cancer cases in the United States. Despite its rare nature, IBC is responsible for 7-10% of all breast cancer deaths, with a 5-year survival rate of 40%. Thus, targeted and effective therapies against IBC are needed. Here, we proposed Lipocalin-2 (LCN2)-a secreted glycoprotein aberrantly abundant in different cancers-as a plausible target for IBC. In immunoblotting, we observed higher LCN2 protein levels in IBC cells than non-IBC cells, where the LCN2 levels were almost undetectable. We assessed the biological effects of targeting LCN2 in IBC cells with small interference RNAs (siRNAs) and small molecule inhibitors. siRNA-mediated LCN2 silencing in IBC cells significantly reduced cell proliferation, viability, migration, and invasion. Furthermore, LCN2 silencing promoted apoptosis and arrested the cell cycle progression in the G0/G1 to S phase transition. We used in silico analysis with a library of 25,000 compounds to identify potential LCN2 inhibitors, and four out of sixteen selected compounds significantly decreased cell proliferation, cell viability, and the AKT phosphorylation levels in SUM149 cells. Moreover, ectopically expressing LCN2 MCF7 cells, treated with two potential LCN2 inhibitors (ZINC00784494 and ZINC00640089) showed a significant decrease in cell proliferation. Our findings suggest LCN2 as a promising target for IBC treatment using siRNA and small molecule inhibitors.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Inflamatórias Mamárias/tratamento farmacológico , Lipocalina-2/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Inflamatórias Mamárias/genética , Neoplasias Inflamatórias Mamárias/patologia , Lipocalina-2/genética , Células MCF-7 , Terapia de Alvo Molecular/métodos , Invasividade Neoplásica , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico
2.
Int J Nanomedicine ; 15: 2809-2828, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368056

RESUMO

INTRODUCTION: Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB). METHODS: Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue. RESULTS: SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG. DISCUSSION: SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Lipossomos/administração & dosagem , Interferência de RNA , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Técnicas de Transferência de Genes , Glioblastoma/genética , Glioblastoma/patologia , Ouro/química , Humanos , Lipossomos/química , Masculino , Nanopartículas Metálicas/química , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Ácidos Nucleicos/química , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/farmacocinética , Proteínas do Envelope Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Front Oncol ; 10: 602670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392094

RESUMO

Cumulating evidence indicates that dysregulation of microRNAs (miRNAs) plays a central role in the initiation, progression, and drug resistance of cancer cells. However, the specific miRNAs contributing to drug resistance in ovarian cancer cells have not been fully elucidated. Aimed to identify potential miRNAs involved in platinum resistance, we performed a miRNA expression profile in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells, and we found several differentially abundant miRNAs in the pair of cell lines. Notably, miR-18a-5p (miR-18a), a member of the oncogenic associated miR-17-92 cluster, was decreased in cisplatin-resistant as compared with cisplatin-sensitive cells. Real-time PCR analysis confirmed these findings. We then studied the biological, molecular, and therapeutic consequences of increasing the miR-18a levels with oligonucleotide microRNA mimics (OMM). Compared with a negative control OMM, transient transfection of a miR-18a-OMM reduced cell growth, cell proliferation, and cell invasion. Intraperitoneal injections of miR-18a-OMM-loaded folate-conjugated liposomes significantly reduced the tumor weight and the number of nodules in ovarian cancer-bearing mice when compared with a control-OMM group. Survival analysis using the Kaplan-Meier plotter database showed that ovarian cancer patients with high miR-18a levels live longer in comparison to patients with lower miR-18a levels. Bioinformatic analyses, real-time-PCR, Western blots, and luciferase reporter assays revealed that Matrix Metalloproteinase-3 (MMP-3) is a direct target of miR-18a. Small-interfering RNA (siRNA)-mediated silencing of MMP-3 reduced cell viability, cell growth, and the invasiveness potential of cisplatin-resistant ovarian cancer cells. Our study suggests that targeting miR-18a is a plausible therapeutic strategy for cisplatin-resistant ovarian cancer.

4.
Oncotarget ; 7(24): 36321-36337, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27166999

RESUMO

MicroRNA-21 is overexpressed in most cancers and has been implicated in tumorigenesis. Accumulating evidence supports a central role for the miR-21 guide strand (miR-21-5p) in ovarian cancer initiation, progression, and chemoresistance. However, there is limited information regarding the biological role of the miR-21 passenger strand (miR-21-3p) in ovarian cancer cells. The aim of this study was to investigate the role of miR-21-3p and its target genes in cisplatin-resistant ovarian cancer cells. Expression profiling of miR-21-5p and miR-21-3p was performed in a panel of cancer cells by qPCR. Colony formation and invasion assays were carried out on ovarian and prostate cancer cells transfected with miR-21-5p and miR-21-3p inhibitors. Dual luciferase reporter assays were used to identify the miR-21-3p target genes in ovarian cancer cells. Our results show that miR-21-5p had higher expression levels compared to miR-21-3p on a panel of cancer cells. Moreover, inhibition of miR-21-5p or miR-21-3p resulted in a significant decrease in ovarian and prostate cancer cell proliferation and invasion. Luciferase reporter assays identify RNA Binding Protein with Multiple Splicing (RBPMS), Regulator of Chromosome Condensation and POZ Domain Containing Protein 1 (RCBTB1), and Zinc Finger protein 608 (ZNF608) as miR-21-3p target genes. SiRNA-induced RBPMS silencing reduced the sensitivity of ovarian cancer cells to cisplatin treatment. Immunohistochemical analyses of serous ovarian cancer patient samples suggest a significant decrease of RBMPS levels when compared to normal ovarian epithelium. Taken together, the data generated in this study suggests a functional role for miR-21-3p in ovarian cancer and other solid tumors.


Assuntos
Proliferação de Células/genética , Cistadenocarcinoma Seroso/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Ovarianas/genética , Regiões 3' não Traduzidas/genética , Adulto , Idoso , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
5.
Mol Cancer Ther ; 14(10): 2260-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26227489

RESUMO

The purpose of this study was to investigate the molecular and therapeutic effects of siRNA-mediated c-MYC silencing in cisplatin-resistant ovarian cancer. Statistical analysis of patient's data extracted from The Cancer Genome Atlas (TCGA) portal showed that the disease-free (DFS) and the overall (OS) survival were decreased in ovarian cancer patients with high c-MYC mRNA levels. Furthermore, analysis of a panel of ovarian cancer cell lines showed that c-MYC protein levels were higher in cisplatin-resistant cells when compared with their cisplatin-sensitive counterparts. In vitro cell viability, growth, cell-cycle progression, and apoptosis, as well as in vivo therapeutic effectiveness in murine xenograft models, were also assessed following siRNA-mediated c-MYC silencing in cisplatin-resistant ovarian cancer cells. Significant inhibition of cell growth and viability, cell-cycle arrest, and activation of apoptosis were observed upon siRNA-mediated c-MYC depletion. In addition, single weekly doses of c-MYC-siRNA incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG-2000)-based nanoliposomes resulted in significant reduction in tumor growth. These findings identify c-MYC as a potential therapeutic target for ovarian cancers expressing high levels of this oncoprotein.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Camundongos Nus , Neoplasias Ovarianas/mortalidade , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
PLoS One ; 9(5): e97094, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24865582

RESUMO

Cisplatin has been the most accepted drug for the treatment of ovarian cancer for almost 40 years. Although the majority of patients with ovarian cancer respond to front-line platinum combination chemotherapy, many patients will develop cisplatin-resistance disease, which is extremely rapid and fatal. Although various mechanisms of cisplatin resistance have been postulated, the key molecules involved in such resistance have not been identified. MiRNAs are endogenously expressed small non-coding RNAs, which are evolutionarily conserved and function as post-transcriptional regulators of gene expression. Dysregulation of miRNAs have been associated with cancer initiation, progression and drug resistance. The oncogenic miRNA-21, one of the best-studied miRNAs, is upregulated in almost all human cancers. However, the regulation of miR-21 in cisplatin resistant ovarian cancer cells has not been assessed. In this study, we measured the miR-21 expression by real-time PCR and found upregulation of miR-21 in cisplatin resistant compared with cisplatin sensitive ovarian cancer cells. Chromatin immunoprecipitation studies demonstrated the association of the c-Jun transcription factor to the pri-mir-21 DNA promoter regions. Blocking the JNK-1, the major activator of c-Jun phosphorylation, reduced the expression of pre-mir-21 and increased the expression of its well-known target gene, PDCD4. Overexpression of miR-21 in cisplatin sensitive cells decreased PDCD4 levels and increased cell proliferation. Finally, targeting miR-21 reduced cell growth, proliferation and invasion of cisplatin resistant ovarian cancer cells. These results suggest that the JNK-1/c-Jun/miR-21 pathway contributes to the cisplatin resistance of ovarian cancer cells and demonstrated that miR-21 is a plausible target to overcome cisplatin resistance.


Assuntos
Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Neoplasias Ovarianas/genética , Proteínas de Ligação a RNA/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Imunoprecipitação da Cromatina , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
7.
Clin Cancer Res ; 17(11): 3716-26, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21512144

RESUMO

PURPOSE: To study the role of survivin and its splice variants in taxane-resistant ovarian cancer. EXPERIMENTAL DESIGN: We assessed the mRNA levels of survivin splice variants in ovarian cancer cell lines and ovarian tumor samples. siRNAs targeting survivin were designed to silence all survivin splice variants (T-siRNA) or survivin 2B (2B-siRNA) in vitro and orthotopic murine models of ovarian cancer. The mechanism of cell death was studied in taxane-resistant ovarian cancer cells and in tumor sections obtained from different mouse tumors. RESULTS: Taxane-resistant ovarian cancer cells express higher survivin mRNA levels than their taxane-sensitive counterparts. Survivin 2B expression was significantly higher in taxane-resistant compared with -sensitive cells. Silencing survivin 2B induced growth inhibitory effects similar to silencing total survivin in vitro. In addition, survivin 2B-siRNA incorporated into DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) nanoliposomes resulted in significant reduction in tumor growth (P < 0.05) in orthotopic murine models of ovarian cancer, and these effects were similar to T-siRNA-DOPC. The antitumor effects were further enhanced in combination with docetaxel chemotherapy (P < 0.01). Finally, we found a significant association between survivin 2B expression and progression-free survival in 117 epithelial ovarian cancers obtained at primary debulking surgery. CONCLUSIONS: These data identify survivin 2B as an important target in ovarian cancer and provide a translational path forward for developing new therapies against this target.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/farmacologia , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Interferência de RNA , Taxoides/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , Survivina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA