Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell Rep Med ; 5(3): 101426, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38366600

RESUMO

The human gut microbiota is influenced by various factors, including health status and environmental conditions, yet considerable inter-individual differences remain unexplained. Previous studies identified that the gut microbiota of men who have sex with men (MSM) is distinct from that of non-MSM. Here, we reveal through species-level microbiota analysis using shotgun metagenomics that the gut microbiota of many MSM with Western origin resembles gut microbial communities of non-Westernized populations. Specifically, MSM gut microbiomes are frequently dominated by members of the Prevotellaceae family, including co-colonization of species from the Segatella copri complex and unknown Prevotellaceae members. Questionnaire-based analysis exploring inter-individual differences in MSM links specific sexual practices to microbiota composition. Moreover, machine learning identifies microbial features associated with sexual activities in MSM. Together, this study shows associations of sexual activities with gut microbiome alterations in MSM, which may have a large impact on population-based microbiota studies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Minorias Sexuais e de Gênero , Masculino , Humanos , Homossexualidade Masculina , Comportamento Sexual
2.
Cell ; 187(1): 17-43, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181740

RESUMO

Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.


Assuntos
Microbiota , Fatores Sociais , Simbiose , Animais , Humanos , Doenças não Transmissíveis , Virulência
3.
EBioMedicine ; 99: 104917, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104504

RESUMO

BACKGROUND: Neuroblastoma is the most frequent extracranial solid tumour in children, accounting for ∼15% of deaths due to cancer in childhood. The most common clinical presentation are abdominal tumours. An altered gut microbiome composition has been linked to multiple cancer types, and reported in murine models of neuroblastoma. Whether children with neuroblastoma display alterations in gut microbiome composition remains unexplored. METHODS: We assessed gut microbiome composition by shotgun metagenomic profiling in an observational cross-sectional study on 288 individuals, consisting of patients with a diagnosis of neuroblastoma at disease onset (N = 63), healthy controls matching the patients on the main covariates of microbiome composition (N = 94), healthy siblings of the patients (N = 13), mothers of patients (N = 59), and mothers of the controls (N = 59). We examined taxonomic and functional microbiome composition and mother-infant strain transmission patterns. FINDINGS: Patients with neuroblastoma displayed alterations in gut microbiome composition characterised by reduced microbiome richness, decreased relative abundances of 18 species (including Phocaeicola dorei and Bifidobacterium bifidum), enriched protein fermentation and reduced carbohydrate fermentation potential. Using machine learning, we could successfully discriminate patients from controls (AUC = 82%). Healthy siblings did not display such alterations but resembled the healthy control group. No significant differences in maternal microbiome composition nor mother-to-offspring transmission were detected. INTERPRETATION: Patients with neuroblastoma display alterations in taxonomic and functional gut microbiome composition, which cannot be traced to differential maternal seeding. Follow-up research should include investigating potential causal links. FUNDING: Italian Ministry of Health Ricerca Corrente and Ricerca Finalizzata 5 per mille (to MPonzoni); Fondazione Italiana Neuroblastoma (to MPonzoni); European Research Council (ERC-StG project MetaPG-716575 and ERC-CoG microTOUCH-101045015 to NS); the European H2020 program ONCOBIOME-825410 project (to NS); the National Cancer Institute of the National Institutes of Health 1U01CA230551 (to NS); the Premio Internazionale Lombardia e Ricerca 2019 (to NS); the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2017 Grant 2017J3E2W2 (to NS); EMBO ALTF 593-2020 and Knowledge Generation Project from the Spanish Ministry of Science and Innovation (PID2022-139328OA-I00) (to MV-C).


Assuntos
Microbioma Gastrointestinal , Microbiota , Neuroblastoma , Lactente , Criança , Feminino , Humanos , Animais , Camundongos , Estudos Transversais , Metagenoma , Neuroblastoma/etiologia
4.
Cell Host Microbe ; 31(11): 1804-1819.e9, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37883976

RESUMO

The Segatella copri (formerly Prevotella copri) complex (ScC) comprises taxa that are key members of the human gut microbiome. It was previously described to contain four distinct phylogenetic clades. Combining targeted isolation with large-scale metagenomic analysis, we defined 13 distinct Segatella copri-related species, expanding the ScC complex beyond four clades. Complete genome reconstruction of thirteen strains from seven species unveiled the presence of genetically diverse large circular extrachromosomal elements. These elements are consistently present in most ScC species, contributing to intra- and inter-species diversities. The nine species-level clades present in humans display striking differences in prevalence and intra-species genetic makeup across human populations. Based on a meta-analysis, we found reproducible associations between members of ScC and the male sex and positive correlations with lower visceral fat and favorable markers of cardiometabolic health. Our work uncovers genomic diversity within ScC, facilitating a better characterization of the human microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Masculino , Microbioma Gastrointestinal/genética , Metagenoma , Filogenia , Prevotella , Feminino
5.
Cell Host Microbe ; 31(5): 712-733, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37167953

RESUMO

Fecal microbiota transplantation (FMT) has achieved satisfactory results in preventing the recurrence of Clostridioides difficile infection, but these positive outcomes have only been partially replicated in other diseases. Several factors influence FMT success, including those related to donors and recipients (including diversity and specific composition of the gut microbiome, immune system, and host genetics) as well as to working protocols (fecal amount and number of infusions, route of delivery, and adjuvant treatments). Moreover, initial evidence suggests that the clinical success of FMT may be related to the degree of donor microbial engraftment. The application of cutting-edge technologies for microbiome assessment, along with changes in the current vision of fecal transplants, are expected to improve FMT protocols and outcomes. Here, we review the key determinants of FMT success and insights and strategies that will enable a close integration of lab-based and clinical approaches for increasing FMT success.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Microbiota , Humanos , Transplante de Microbiota Fecal/métodos , Fezes , Infecções por Clostridium/terapia , Resultado do Tratamento
6.
Cell Rep ; 42(5): 112464, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37141097

RESUMO

Mouse models are key tools for investigating host-microbiome interactions. However, shotgun metagenomics can only profile a limited fraction of the mouse gut microbiome. Here, we employ a metagenomic profiling method, MetaPhlAn 4, which exploits a large catalog of metagenome-assembled genomes (including 22,718 metagenome-assembled genomes from mice) to improve the profiling of the mouse gut microbiome. We combine 622 samples from eight public datasets and an additional cohort of 97 mouse microbiomes, and we assess the potential of MetaPhlAn 4 to better identify diet-related changes in the host microbiome using a meta-analysis approach. We find multiple, strong, and reproducible diet-related microbial biomarkers, largely increasing those identifiable by other available methods relying only on reference information. The strongest drivers of the diet-induced changes are uncharacterized and previously undetected taxa, confirming the importance of adopting metagenomic methods integrating metagenomic assemblies for comprehensive profiling.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbiota/genética , Metagenoma , Dieta , Metagenômica/métodos
7.
Curr Biol ; 33(10): 1939-1950.e4, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37116481

RESUMO

The human microbiome seeding starts at birth, when pioneer microbes are acquired mainly from the mother. Mode of delivery, antibiotic prophylaxis, and feeding method have been studied as modulators of mother-to-infant microbiome transmission, but other key influencing factors like modern westernized lifestyles with high hygienization, high-calorie diets, and urban settings, compared with non-westernized lifestyles have not been investigated yet. In this study, we explored the mother-infant sharing of characterized and uncharacterized microbiome members via strain-resolved metagenomics in a cohort of Ethiopian mothers and infants, and we compared them with four other cohorts with different lifestyles. The westernized and non-westernized newborns' microbiomes composition overlapped during the first months of life more than later in life, likely reflecting similar initial breast-milk-based diets. Ethiopian and other non-westernized infants shared a smaller fraction of the microbiome with their mothers than did most westernized populations, despite showing a higher microbiome diversity, and uncharacterized species represented a substantial fraction of those shared in the Ethiopian cohort. Moreover, we identified uncharacterized species belonging to the Selenomonadaceae and Prevotellaceae families specifically present and shared only in the Ethiopian cohort, and we showed that a locally produced fermented food, injera, can contribute to the higher diversity observed in the Ethiopian infants' gut with bacteria that are not part of the human microbiome but are acquired through fermented food consumption. Taken together, these findings highlight the fact that lifestyle can impact the gut microbiome composition not only through differences in diet, drug consumption, and environmental factors but also through its effect on mother-infant strain-sharing patterns.


Assuntos
Microbioma Gastrointestinal , Microbiota , Feminino , Humanos , Lactente , Recém-Nascido , Bactérias , Leite Humano/microbiologia , Mães , Fezes/microbiologia
8.
Nat Med ; 29(3): 551-561, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36932240

RESUMO

Cardiometabolic diseases have become a leading cause of morbidity and mortality globally. They have been tightly linked to microbiome taxonomic and functional composition, with diet possibly mediating some of the associations described. Both the microbiome and diet are modifiable, which opens the way for novel therapeutic strategies. High-throughput omics techniques applied on microbiome samples (meta-omics) hold the unprecedented potential to shed light on the intricate links between diet, the microbiome, the metabolome and cardiometabolic health, with a top-down approach. However, effective integration of complementary meta-omic techniques is an open challenge and their application on large cohorts is still limited. Here we review meta-omics techniques and discuss their potential in this context, highlighting recent large-scale efforts and the novel insights they provided. Finally, we look to the next decade of meta-omics research and discuss various translational and clinical pathways to improving cardiometabolic health.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Metabolômica/métodos , Dieta , Metaboloma , Doenças Cardiovasculares/metabolismo
9.
Nat Biotechnol ; 41(11): 1633-1644, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36823356

RESUMO

Metagenomic assembly enables new organism discovery from microbial communities, but it can only capture few abundant organisms from most metagenomes. Here we present MetaPhlAn 4, which integrates information from metagenome assemblies and microbial isolate genomes for more comprehensive metagenomic taxonomic profiling. From a curated collection of 1.01 M prokaryotic reference and metagenome-assembled genomes, we define unique marker genes for 26,970 species-level genome bins, 4,992 of them taxonomically unidentified at the species level. MetaPhlAn 4 explains ~20% more reads in most international human gut microbiomes and >40% in less-characterized environments such as the rumen microbiome and proves more accurate than available alternatives on synthetic evaluations while also reliably quantifying organisms with no cultured isolates. Application of the method to >24,500 metagenomes highlights previously undetected species to be strong biomarkers for host conditions and lifestyles in human and mouse microbiomes and shows that even previously uncharacterized species can be genetically profiled at the resolution of single microbial strains.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Metagenoma/genética , Microbiota/genética , Metagenômica/métodos , Filogenia
10.
Gut Microbes ; 15(1): 2162306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36651663

RESUMO

The prevalence of anxiety and depression soared following the COVID-19 pandemic. To effectively treat these conditions, a comprehensive understanding of all etiological factors is needed. This study investigated fecal microbial features associated with mental health outcomes (symptoms of anxiety, depression, or posttraumatic stress disorder (PTSD)) in a Spanish cohort in the aftermath of the COVID-19 pandemic. Microbial communities from stool samples were profiled in 198 individuals who completed validated, self-report questionnaires. 16S ribosomal RNA gene V3-4 amplicon sequencing was performed. Microbial diversity and community structure were analyzed, together with relative taxonomic abundance. In our cohort of N=198, 17.17% reported depressive symptoms, 37.37% state anxiety symptoms, 40.90% trait anxiety symptoms, and 8.08% PTSD symptoms, with high levels of comorbidity. Individuals with trait anxiety had lower Simpson's diversity. Fusicatenibacter saccharivorans was reduced in individuals with comorbid PTSD + depression + state and trait anxiety symptoms, whilst an expansion of Proteobacteria and depletion of Synergistetes phyla were noted in individuals with depressive symptoms. The relative abundance of Anaerostipes was positively correlated with childhood trauma, and higher levels of Turicibacter sanguinis and lower levels of Lentisphaerae were found in individuals who experienced life-threatening traumas. COVID-19 infection and vaccination influenced the overall microbial composition and were associated with distinct relative taxonomic abundance profiles. These findings will help lay the foundation for future studies to identify microbial role players in symptoms of anxiety, depression, and PTSD and provide future therapeutic targets to improve mental health outcomes.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Microbiota , Humanos , Depressão/epidemiologia , Depressão/microbiologia , Pandemias , COVID-19/epidemiologia , Microbioma Gastrointestinal/genética , Ansiedade/epidemiologia , Ansiedade/microbiologia , Encéfalo
11.
Nature ; 614(7946): 125-135, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653448

RESUMO

The human microbiome is an integral component of the human body and a co-determinant of several health conditions1,2. However, the extent to which interpersonal relations shape the individual genetic makeup of the microbiome and its transmission within and across populations remains largely unknown3,4. Here, capitalizing on more than 9,700 human metagenomes and computational strain-level profiling, we detected extensive bacterial strain sharing across individuals (more than 10 million instances) with distinct mother-to-infant, intra-household and intra-population transmission patterns. Mother-to-infant gut microbiome transmission was considerable and stable during infancy (around 50% of the same strains among shared species (strain-sharing rate)) and remained detectable at older ages. By contrast, the transmission of the oral microbiome occurred largely horizontally and was enhanced by the duration of cohabitation. There was substantial strain sharing among cohabiting individuals, with 12% and 32% median strain-sharing rates for the gut and oral microbiomes, and time since cohabitation affected strain sharing more than age or genetics did. Bacterial strain sharing additionally recapitulated host population structures better than species-level profiles did. Finally, distinct taxa appeared as efficient spreaders across transmission modes and were associated with different predicted bacterial phenotypes linked with out-of-host survival capabilities. The extent of microorganism transmission that we describe underscores its relevance in human microbiome studies5, especially those on non-infectious, microbiome-associated diseases.


Assuntos
Bactérias , Transmissão de Doença Infecciosa , Microbioma Gastrointestinal , Ambiente Domiciliar , Microbiota , Boca , Feminino , Humanos , Lactente , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Microbioma Gastrointestinal/genética , Metagenoma , Microbiota/genética , Mães , Boca/microbiologia , Transmissão Vertical de Doenças Infecciosas , Características da Família , Envelhecimento , Fatores de Tempo , Viabilidade Microbiana
12.
Nat Med ; 28(9): 1913-1923, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36109637

RESUMO

Fecal microbiota transplantation (FMT) is highly effective against recurrent Clostridioides difficile infection and is considered a promising treatment for other microbiome-related disorders, but a comprehensive understanding of microbial engraftment dynamics is lacking, which prevents informed applications of this therapeutic approach. Here, we performed an integrated shotgun metagenomic systematic meta-analysis of new and publicly available stool microbiomes collected from 226 triads of donors, pre-FMT recipients and post-FMT recipients across eight different disease types. By leveraging improved metagenomic strain-profiling to infer strain sharing, we found that recipients with higher donor strain engraftment were more likely to experience clinical success after FMT (P = 0.017) when evaluated across studies. Considering all cohorts, increased engraftment was noted in individuals receiving FMT from multiple routes (for example, both via capsules and colonoscopy during the same treatment) as well as in antibiotic-treated recipients with infectious diseases compared with antibiotic-naïve patients with noncommunicable diseases. Bacteroidetes and Actinobacteria species (including Bifidobacteria) displayed higher engraftment than Firmicutes except for six under-characterized Firmicutes species. Cross-dataset machine learning predicted the presence or absence of species in the post-FMT recipient at 0.77 average AUROC in leave-one-dataset-out evaluation, and highlighted the relevance of microbial abundance, prevalence and taxonomy to infer post-FMT species presence. By exploring the dynamics of microbiome engraftment after FMT and their association with clinical variables, our study uncovered species-specific engraftment patterns and presented machine learning models able to predict donors that might optimize post-FMT specific microbiome characteristics for disease-targeted FMT protocols.


Assuntos
Infecções por Clostridium , Microbioma Gastrointestinal , Microbiota , Antibacterianos , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Humanos , Resultado do Tratamento
13.
Eur Neuropsychopharmacol ; 56: 24-38, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34923209

RESUMO

Posttraumatic stress disorder (PTSD) imposes a significant burden on patients and communities. Although the microbiome-gut-brain axis has been proposed as a mediator or moderator of PTSD risk and persistence of symptoms, clinical data directly delineating the gut microbiome's relationship to PTSD are sparse. This study investigated associations between the gut microbiome and mental health outcomes in participants with PTSD (n = 79) and trauma-exposed controls (TECs) (n = 58). Diagnoses of PTSD, major depressive disorder (MDD), and childhood trauma were made using the Clinician-Administered PTSD Scale for DSM-5 (CAPS-5), MINI International Neuropsychiatric Interview (MINI), and Childhood Trauma Questionnaire (CTQ), respectively. Microbial communities from stool samples were profiled using 16S ribosomal RNA gene V4 amplicon sequencing and tested for associations with PTSD-related variables of interest. Random forest models identified a consortium of four genera, i.e.,  a combination of Mitsuokella, Odoribacter, Catenibacterium, and Olsenella, previously associated with periodontal disease, that could distinguish PTSD status with 66.4% accuracy. The relative abundance of this consortium was higher in the PTSD group and correlated positively with CAPS-5 and CTQ scores. MDD diagnosis was also associated with increased relative abundance of the Bacteroidetes phylum. Current use of psychotropics significantly impacted community composition and the relative abundances of several taxa. Early life trauma may prime the microbiome for changes in composition that facilitate a pro-inflammatory cascade and increase the risk of development of PTSD. Future studies should rigorously stratify participants into healthy controls, TECs, and PTSD (stratified by psychotropic drug use) to explore the role of the oral-gut-microbiome-brain axis in trauma-related disorders.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Transtornos de Estresse Pós-Traumáticos , Manual Diagnóstico e Estatístico de Transtornos Mentais , Microbioma Gastrointestinal/genética , Humanos , Avaliação de Resultados em Cuidados de Saúde , Transtornos de Estresse Pós-Traumáticos/psicologia
14.
Nat Microbiol ; 7(1): 87-96, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969979

RESUMO

Although the composition and functional potential of the human gut microbiota evolve over the lifespan, kinship has been identified as a key covariate of microbial community diversification. However, to date, sharing of microbiota features within families has mostly been assessed between parents and their direct offspring. Here we investigate the potential transmission and persistence of familial microbiome patterns and microbial genotypes in a family cohort (n = 102) spanning 3 to 5 generations over the same female bloodline. We observe microbiome community composition associated with kinship, with seven low abundant genera displaying familial distribution patterns. While kinship and current cohabitation emerge as closely entangled variables, our explorative analyses of microbial genotype distribution and transmission estimates point at the latter as a key covariate of strain dissemination. Highest potential transmission rates are estimated between sisters and mother-daughter pairs, decreasing with increasing daughter's age and being higher among cohabiting pairs than those living apart. Although rare, we detect potential transmission events spanning three and four generations, primarily involving species of the genera Alistipes and Bacteroides. Overall, while our analyses confirm the existence of family-bound microbiome community profiles, transmission or co-acquisition of bacterial strains appears to be strongly linked to cohabitation.


Assuntos
Bactérias/genética , Família , Microbioma Gastrointestinal/genética , Metagenoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos/genética , Criança , Pré-Escolar , Estudos de Coortes , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Metagenômica/métodos , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Adulto Jovem
15.
Nat Aging ; 2(5): 438-452, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-37118062

RESUMO

A better understanding of the biological and environmental variables that contribute to exceptional longevity has the potential to inform the treatment of geriatric diseases and help achieve healthy aging. Here, we compared the gut microbiome and blood metabolome of extremely long-lived individuals (94-105 years old) to that of their children (50-79 years old) in 116 Han Chinese families. We found extensive metagenomic and metabolomic remodeling in advanced age and observed a generational divergence in the correlations with socioeconomic factors. An analysis of quantitative trait loci revealed that genetic associations with metagenomic and metabolomic features were largely generation-specific, but we also found 131 plasma metabolic quantitative trait loci associations that were cross-generational with the genetic variants concentrated in six loci. These included associations between FADS1/2 and arachidonate, PTPA and succinylcarnitine and FLVCR1 and choline. Our characterization of the extensive metagenomic and metabolomic remodeling that occurs in people reaching extreme ages may offer new targets for aging-related interventions.


Assuntos
Centenários , Nonagenários , Idoso de 80 Anos ou mais , Criança , Humanos , Idoso , Pessoa de Meia-Idade , Longevidade/genética , Envelhecimento/genética , Fatores Socioeconômicos
17.
mBio ; 12(6): e0185721, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903050

RESUMO

Disturbances in the primary colonization of the infant gut can result in lifelong consequences and have been associated with a range of host conditions. Although early-life factors have been shown to affect infant gut microbiota development, our current understanding of human gut colonization in early life remains limited. To gain more insights into the unique dynamics of this rapidly evolving ecosystem, we investigated the microbiota over the first year of life in eight densely sampled infants (n = 303 total samples). To evaluate the gut microbiota maturation transition toward an adult configuration, we compared the microbiome composition of the infants to that of the Flemish Gut Flora Project (FGFP) population (n = 1,106). We observed the infant gut microbiota to mature through three distinct, conserved stages of ecosystem development. Across these successional gut microbiota maturation stages, the genus predominance was observed to shift from Escherichia over Bifidobacterium to Bacteroides. Both disease and antibiotic treatment were observed to be associated occasionally with gut microbiota maturation stage regression, a transient setback in microbiota maturation dynamics. Although the studied microbiota trajectories evolved to more adult-like constellations, microbiome community typing against the background of the FGFP cohort clustered all infant samples within the (in adults) potentially dysbiotic Bacteroides 2 (Bact2) enterotype. We confirmed the similarities between infant gut microbial colonization and adult dysbiosis. Profound knowledge about the primary gut colonization process in infants might provide crucial insights into how the secondary colonization of a dysbiotic adult gut can be redirected. IMPORTANCE After birth, microbial colonization of the infant intestinal tract is important for health later in life. However, this initial process is highly dynamic and influenced by many factors. Studying this process in detail requires a dense longitudinal sampling effort. In the current study, the bacterial microbiota of >300 stool samples was analyzed from 8 healthy infants, suggesting that the infant gut microbial population matures along a path involving distinct microbial constellations and that the timing of these transitions is infant specific and can temporarily retrace upon external events. We also showed that the infant microbial populations show similarities to suboptimal bacterial populations in the guts of adults. These insights are crucial for a better understanding of the dynamics and characteristics of a "healthy gut microbial population" in both infants and adults and might allow the identification of intervention targets in cases of microbial disturbances or disease.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Recém-Nascido/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Estudos de Coortes , Fezes/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Lactente , Masculino
18.
Nature ; 600(7889): 500-505, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880489

RESUMO

During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery1-5. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drug-host-microbiome interactions in cardiometabolic disease.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Microbiota , Clostridiales , Humanos , Metaboloma
19.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34672919

RESUMO

A Gram-stain-negative, obligatory anaerobic spirochaete (RCC2812T) was isolated from a faecal sample obtained from an individual residing in a remote Amazonian community in Peru. The bacterium showed highest 16S rRNA gene sequence similarity to the pig intestinal spirochete Treponema succinifaciens (89.48 %). Average nucleotide identity values between strain RCC2812T and all available Treponema genomes from validated type strains were all <73 %, thus clearly lower than the species delineation threshold. The DNA G+C content of RCC2812T was 41.24 mol%. Phenotypic characterization using the API-ZYM and API 20A systems confirmed the divergent position of this bacterium within the genus Treponema. Strain RCC2812T could be differentiated from the phylogenetically most closely related T. succinifaciens by the presence of alkaline phosphatase and α -glucosidase activities. Unlike T. succinifaciens, strain RCC2812T grew equally well with or without serum. Strain RCC2812T is the first commensal Treponema isolated from the human faecal microbiota of remote populations, and based on the collected data represents a novel Treponema species for which the name Treponema peruense sp. nov. is proposed. The type strain is RCC2812T (=LMG 31794T=CIP 111910T).


Assuntos
Fezes , Filogenia , Treponema/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Fezes/microbiologia , Humanos , Peru , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Treponema/isolamento & purificação
20.
Genome Biol ; 22(1): 209, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261503

RESUMO

BACKGROUND: Akkermansia muciniphila is a human gut microbe with a key role in the physiology of the intestinal mucus layer and reported associations with decreased body mass and increased gut barrier function and health. Despite its biomedical relevance, the genomic diversity of A. muciniphila remains understudied and that of closely related species, except for A. glycaniphila, unexplored. RESULTS: We present a large-scale population genomics analysis of the Akkermansia genus using 188 isolate genomes and 2226 genomes assembled from 18,600 metagenomes from humans and other animals. While we do not detect A. glycaniphila, the Akkermansia strains in the human gut can be grouped into five distinct candidate species, including A. muciniphila, that show remarkable whole-genome divergence despite surprisingly similar 16S rRNA gene sequences. These candidate species are likely human-specific, as they are detected in mice and non-human primates almost exclusively when kept in captivity. In humans, Akkermansia candidate species display ecological co-exclusion, diversified functional capabilities, and distinct patterns of associations with host body mass. Analysis of CRISPR-Cas loci reveals new variants and spacers targeting newly discovered putative bacteriophages. Remarkably, we observe an increased relative abundance of Akkermansia when cognate predicted bacteriophages are present, suggesting ecological interactions. A. muciniphila further exhibits subspecies-level genetic stratification with associated functional differences such as a putative exo/lipopolysaccharide operon. CONCLUSIONS: We uncover a large phylogenetic and functional diversity of the Akkermansia genus in humans. This variability should be considered in the ongoing experimental and metagenomic efforts to characterize the health-associated properties of A. muciniphila and related bacteria.


Assuntos
Microbioma Gastrointestinal/genética , Genoma Bacteriano , Metagenoma , Filogenia , Akkermansia/classificação , Akkermansia/genética , Akkermansia/metabolismo , Akkermansia/virologia , Animais , Bacteriófagos/crescimento & desenvolvimento , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Variação Genética , Humanos , Camundongos , Óperon , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...