Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotheranostics ; 8(3): 401-426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751937

RESUMO

The integration of preclinical magnetic resonance imaging (MRI) and computed tomography (CT) methods has significantly enhanced the area of therapy and imaging of targeted nanomedicine. Nanotheranostics, which make use of nanoparticles, are a significant advancement in MRI and CT imaging. In addition to giving high-resolution anatomical features and functional information simultaneously, these multifunctional agents improve contrast when used. In addition to enabling early disease detection, precise localization, and personalised therapy monitoring, they also enable early disease detection. Fusion of MRI and CT enables precise in vivo tracking of drug-loaded nanoparticles. MRI, which provides real-time monitoring of nanoparticle distribution, accumulation, and release at the cellular and tissue levels, can be used to assess the efficacy of drug delivery systems. The precise localization of nanoparticles within the body is achievable through the use of CT imaging. This technique enhances the capabilities of MRI by providing high-resolution anatomical information. CT also allows for quantitative measurements of nanoparticle concentration, which is essential for evaluating the pharmacokinetics and biodistribution of nanomedicine. In this article, we emphasize the integration of preclinical MRI and CT into molecular imaging and therapy for advanced diseases.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Imageamento por Ressonância Magnética/métodos , Humanos , Tomografia Computadorizada por Raios X/métodos , Animais , Imagem Molecular/métodos , Nanopartículas/química , Nanomedicina Teranóstica/métodos
2.
Nat Prod Res ; : 1-10, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646872

RESUMO

Parkinson's disease (PD) is characterised by the gradual demise of dopaminergic neurons. In recent years, there has been significant interest in herbal treatments. In this study, hesperetin nanoparticles (HTN) were developed and compared their anti-PD potential with hesperetin (HT) on rotenone induced PD rats. Molecular docking was also performed to evaluate the binding affinity of hesperetin on pathological protein, i.e. D2 dopamine receptors (DR2), using Auto Dock Vina tools. The results showed a higher binding relationship of HTN on dopamine receptors (-7.2 kcal/mol) compared to L-dopa (-6.4 kcal/mol), supporting their potential as drug candidates for PD therapy. HTN was effectively synthesised using the fabrication technique and characterised by zeta potential and SEM analysis. HTN had favourable characteristics, including a size of 249.8 ± 14.9 nm and a Z-potential of -32.9 mV. After being administered orally, HTN demonstrated a notable anti-Parkinsonian effects, indicated by the significant improvement in motor function as assessed by the rota rod test (p < .001***), pole test (p < .001***), stair test (p < .01**), wood walk test (p < .01**) and an increase in substantia nigra (SN) antioxidant levels, CAT (p < .001***), SOD (p < .001***), GSH (p < .01**). Additionally, HTN led to increased dopamine levels (p < .01**) and a decrease in the oxidant system, MDA levels (p < .01**). Furthermore, histopathological examination revealed decreased SN neuronal necrosis in diseased animals treated with HTN compared to those treated with HT in a rat model of Parkinson's disease. Therefore, HTN can be regarded as a viable platform for efficient therapy of PD.

3.
Nanotheranostics ; 8(3): 344-379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577318

RESUMO

Modern medicine relies on a small number of key biologics, which can be found in nature but require further characterization and purification before they can be used. Since the herbal remedy is given through a dated and ineffective method of drug administration, its effectiveness is diminished. The novel form of medicine delivery has the potential to increase the effectiveness of herbal substances while decreasing their side effects. This is the main idea behind utilising different ways of drug delivery in herbal treatments. Several benefits arise from novel formulations of herbal compounds as compared to their conventional counterparts. These include enhanced penetrating ability into tissues, constant delivery of effective doses, and resistance to physical and chemical degradation. Controlled and targeted delivery that include herbal components allow for more traditional dosing while simultaneously increasing their efficacy. Enhancing the biodistribution and target site accumulation of systemically administered herbal medicines is the goal of nanomedicine formulations. The field of nanotheranostics has made significant advancements in the development of herbal compounds by combining diagnostic and therapeutic functions on a single nanoscale platform. It is critically important to create a theranostic nanoplatform that is derived from plants and is intrinsically "all-in-one" for single molecules. In addition to examining the mechanistic approach to nanoparticle synthesis, this review highlights the therapeutic effects of nanoscale phytochemical delivery systems. Furthermore, we have evaluated the scope for future advancements in this field, discussed several nanoparticles that have been developed recently for herbal imaging, and provided experimental evidence that supports their usage.


Assuntos
Sistemas de Liberação de Medicamentos , Medicina de Precisão , Distribuição Tecidual , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Nanotecnologia
4.
J Pharm Biomed Anal ; 245: 116149, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678858

RESUMO

A precise, sensitive, accurate, and validated reverse-phase high-performance liquid chromatography (RP-HPLC) method with a bioanalytical approach was utilized to analyze Cabazitaxel (CBZ) in rat plasma. Comparative research on extraction recoveries was performed between traditional liquid-liquid extraction (LLE) and synthesized graphene oxide (GO) based magnetic solid phase extraction (GO@MSPE). The superparamagnetic hybrid nanosorbent was synthesized using the combination of iron oxide and GO and subsequently applied for extraction and bioanalytical quantification of CBZ from plasma by (HPLC-PDA) analysis. Fourier- transform infrared spectroscopy (FT-IR), particle size, scanning electron microscopy (SEM), and x-ray diffraction (XRD) analysis were employed in the characterization of synthesized GO@MSPE nanosorbent. The investigation was accomplished using a shim pack C18 column (150 mm×4.6 mm, 5 µm) with a binary gradient mobile phase consisting of formic acid: acetonitrile: water (0.1:75:25, v/v/v) at a 0.8 mL/min flow rate, and a λmax of 229 nm. The limits of detection (LOD) and quantitation (LOQ) have been determined to be 50 and 100 ng/mL for both LLE and SPE techniques. The linearity range of the approach encompassed from 100 to 5000 ng/mL and was found to be linear (coefficient of determination > 0.99) for CBZ. The proposed method showed extraction recovery of 76.8-88.4% for the synthesized GO@MSPE and 69.3-77.4% for LLE, suggesting that the proposed bioanalytical approach was robust and qualified for all validation parameters within the acceptable criteria. Furthermore, the developed hybrid GO@MSPE nanosorbent with the help of the proposed RP-HPLC method, showed a significant potential for the extraction of CBZ in bioanalysis.


Assuntos
Grafite , Limite de Detecção , Extração Líquido-Líquido , Extração em Fase Sólida , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ratos , Extração Líquido-Líquido/métodos , Grafite/química , Extração em Fase Sólida/métodos , Taxoides/sangue , Taxoides/química , Masculino , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...