Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 11(Pt 3): 279-286, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597878

RESUMO

The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations.


Assuntos
COVID-19 , Bases de Dados de Proteínas , Conformação Proteica , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Biologia Computacional/métodos , Proteínas/química
2.
J Mol Biol ; : 168546, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508301

RESUMO

IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.g., enzyme cofactors and drugs). IHMCIF serves as the foundational data standard for the PDB-Dev prototype system, developed for archiving and disseminating integrative structures. It utilizes a flexible data representation to describe integrative structures that span multiple spatiotemporal scales and structural states with definitions for restraints from a variety of experimental methods contributing to integrative structural biology. The IHMCIF extension was created with the benefit of considerable community input and recommendations gathered by the Worldwide Protein Data Bank (wwPDB) Task Force for Integrative or Hybrid Methods (wwpdb.org/task/hybrid). Herein, we describe the development of IHMCIF to support evolving methodologies and ongoing advancements in integrative structural biology. Ultimately, IHMCIF will facilitate the unification of PDB-Dev data and tools with the PDB archive so that integrative structures can be archived and disseminated through PDB.

3.
Curr Opin Struct Biol ; 85: 102773, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38271778

RESUMO

The structures of macromolecular assemblies have given us deep insights into cellular processes and have profoundly impacted biological research and drug discovery. We highlight the structures of macromolecular assemblies that have been modeled using integrative and computational methods and describe how open access to these structures from structural archives has empowered the research community. The arsenal of experimental and computational methods for structure determination ensures a future where whole organelles and cells can be modeled.


Assuntos
Descoberta de Drogas , Modelos Moleculares , Substâncias Macromoleculares/química , Bases de Dados de Proteínas
4.
Nucleic Acids Res ; 52(D1): D245-D254, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953312

RESUMO

The Nucleic Acid Knowledgebase (nakb.org) is a new data resource, updated weekly, for experimentally determined 3D structures containing DNA and/or RNA nucleic acid polymers and their biological assemblies. NAKB indexes nucleic acid-containing structures derived from all major structure determination methods (X-ray, NMR and EM), including all held by the Protein Data Bank (PDB). As the planned successor to the Nucleic Acid Database (NDB), NAKB's design preserves all functionality of the NDB and provides novel nucleic acid-centric content, including structural and functional annotations, as well as annotations from and links to external resources. A variety of custom interactive tools have been developed to enable rapid exploration and drill-down of NAKB's content.


Assuntos
Conformação de Ácido Nucleico , Ácidos Nucleicos , DNA/química , Bases de Conhecimento , Ácidos Nucleicos/genética , RNA/química
5.
J Mol Biol ; 435(14): 167994, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738985

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) provides open access to experimentally-determined three-dimensional (3D) structures of biomolecules. The RCSB PDB RCSB.org research-focused web portal is used annually by many millions of users around the world. They access biostructure information, run complex queries utilizing various search services (e.g., full-text, structural and chemical attribute, chemical, sequence, and structure similarity searches), and visualize macromolecules in 3D, all at no charge and with no limitations on data usage. Notwithstanding more than 24,000-fold growth of the PDB over the past five decades, experimentally-determined structures are only available for a small subset of the millions of proteins of known sequence. Recently developed machine learning software tools can predict 3D structures of proteins at accuracies comparable to lower-resolution experimental methods. The RCSB PDB now provides access to ∼1,000,000 Computed Structure Models (CSMs) of proteins coming from AlphaFold DB and the ModelArchive alongside ∼200,000 experimentally-determined PDB structures. Both CSMs and PDB structures are available on RCSB.org and via well-established RCSB PDB Data, Search, and 1D-Coordinates application programming interfaces (APIs). Simultaneous delivery of PDB data and CSMs provides users with access to complementary structural information across the human proteome and those of model organisms and selected pathogens. API enhancements are backwards-compatible and programmatic users can "opt in" to access CSMs with minimal effort. Herein, we describe modifications to RCSB PDB cyberinfrastructure required to support sixfold scaling of 3D biostructure data delivery and lay the groundwork for scaling to accommodate hundreds of millions of CSMs.


Assuntos
Biologia Computacional , Bases de Dados de Proteínas , Humanos , Biologia Computacional/métodos , Conformação Proteica , Proteoma , Software
6.
J Mol Biol ; 435(14): 168021, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828268

RESUMO

ModelCIF (github.com/ihmwg/ModelCIF) is a data information framework developed for and by computational structural biologists to enable delivery of Findable, Accessible, Interoperable, and Reusable (FAIR) data to users worldwide. ModelCIF describes the specific set of attributes and metadata associated with macromolecular structures modeled by solely computational methods and provides an extensible data representation for deposition, archiving, and public dissemination of predicted three-dimensional (3D) models of macromolecules. It is an extension of the Protein Data Bank Exchange / macromolecular Crystallographic Information Framework (PDBx/mmCIF), which is the global data standard for representing experimentally-determined 3D structures of macromolecules and associated metadata. The PDBx/mmCIF framework and its extensions (e.g., ModelCIF) are managed by the Worldwide Protein Data Bank partnership (wwPDB, wwpdb.org) in collaboration with relevant community stakeholders such as the wwPDB ModelCIF Working Group (wwpdb.org/task/modelcif). This semantically rich and extensible data framework for representing computed structure models (CSMs) accelerates the pace of scientific discovery. Herein, we describe the architecture, contents, and governance of ModelCIF, and tools and processes for maintaining and extending the data standard. Community tools and software libraries that support ModelCIF are also described.


Assuntos
Bases de Dados de Proteínas , Substâncias Macromoleculares/química , Conformação Proteica , Software
7.
Nucleic Acids Res ; 51(D1): D488-D508, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36420884

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), founding member of the Worldwide Protein Data Bank (wwPDB), is the US data center for the open-access PDB archive. As wwPDB-designated Archive Keeper, RCSB PDB is also responsible for PDB data security. Annually, RCSB PDB serves >10 000 depositors of three-dimensional (3D) biostructures working on all permanently inhabited continents. RCSB PDB delivers data from its research-focused RCSB.org web portal to many millions of PDB data consumers based in virtually every United Nations-recognized country, territory, etc. This Database Issue contribution describes upgrades to the research-focused RCSB.org web portal that created a one-stop-shop for open access to ∼200 000 experimentally-determined PDB structures of biological macromolecules alongside >1 000 000 incorporated Computed Structure Models (CSMs) predicted using artificial intelligence/machine learning methods. RCSB.org is a 'living data resource.' Every PDB structure and CSM is integrated weekly with related functional annotations from external biodata resources, providing up-to-date information for the entire corpus of 3D biostructure data freely available from RCSB.org with no usage limitations. Within RCSB.org, PDB structures and the CSMs are clearly identified as to their provenance and reliability. Both are fully searchable, and can be analyzed and visualized using the full complement of RCSB.org web portal capabilities.


Assuntos
Inteligência Artificial , Bases de Dados de Proteínas , Proteínas , Aprendizado de Máquina , Conformação Proteica , Proteínas/química , Reprodutibilidade dos Testes
8.
Biophys Rev ; 14(6): 1281-1301, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36474933

RESUMO

As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) "Resolution Revolution" made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps. After describing the history of the PDB and the Worldwide Protein Data Bank (wwPDB) partnership, which jointly manages both the PDB and EMDB archives, this review examines the origins of the resolution revolution and analyzes its impact on structural biology viewed through the lens of PDB holdings. Six areas of focus exemplifying the impact of 3DEM across the biosciences are discussed in detail (icosahedral viruses, ribosomes, integral membrane proteins, SARS-CoV-2 spike proteins, cryogenic electron tomography, and integrative structure determination combining 3DEM with complementary biophysical measurement techniques), followed by a review of 3DEM structure validation by the wwPDB that underscores the importance of community engagement.

9.
Biomolecules ; 12(10)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36291635

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the United States National Science Foundation, National Institutes of Health, and Department of Energy, supports structural biologists and Protein Data Bank (PDB) data users around the world. The RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, serves as the US data center for the global PDB archive housing experimentally-determined three-dimensional (3D) structure data for biological macromolecules. As the wwPDB-designated Archive Keeper, RCSB PDB is also responsible for the security of PDB data and weekly update of the archive. RCSB PDB serves tens of thousands of data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) annually working on all permanently inhabited continents. RCSB PDB makes PDB data available from its research-focused web portal at no charge and without usage restrictions to many millions of PDB data consumers around the globe. It also provides educators, students, and the general public with an introduction to the PDB and related training materials through its outreach and education-focused web portal. This review article describes growth of the PDB, examines evolution of experimental methods for structure determination viewed through the lens of the PDB archive, and provides a detailed accounting of PDB archival holdings and their utilization by researchers, educators, and students worldwide.


Assuntos
Biologia Computacional , Proteínas , Humanos , Conformação Proteica , Bases de Dados de Proteínas , Biologia Computacional/métodos , Proteínas/química , Estudantes
10.
Protein Sci ; 31(12): e4482, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36281733

RESUMO

Now in its 52nd year of continuous operations, the Protein Data Bank (PDB) is the premiere open-access global archive housing three-dimensional (3D) biomolecular structure data. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) partnership. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) is funded by the National Science Foundation, National Institutes of Health, and US Department of Energy and serves as the US data center for the wwPDB. RCSB PDB is also responsible for the security of PDB data in its role as wwPDB-designated Archive Keeper. Every year, RCSB PDB serves tens of thousands of depositors of 3D macromolecular structure data (coming from macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction). The RCSB PDB research-focused web portal (RCSB.org) makes PDB data available at no charge and without usage restrictions to many millions of PDB data consumers around the world. The RCSB PDB training, outreach, and education web portal (PDB101.RCSB.org) serves nearly 700 K educators, students, and members of the public worldwide. This invited Tools Issue contribution describes how RCSB PDB (i) is organized; (ii) works with wwPDB partners to process new depositions; (iii) serves as the wwPDB-designated Archive Keeper; (iv) enables exploration and 3D visualization of PDB data via RCSB.org; and (v) supports training, outreach, and education via PDB101.RCSB.org. New tools and features at RCSB.org are presented using examples drawn from high-resolution structural studies of proteins relevant to treatment of human cancers by targeting immune checkpoints.


Assuntos
Biologia Computacional , Proteínas , Humanos , Conformação Proteica , Bases de Dados de Proteínas , Proteínas/química , Biologia Computacional/métodos , Substâncias Macromoleculares/química
11.
J Mol Biol ; 434(11): 167599, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460671

RESUMO

PDBx/mmCIF, Protein Data Bank Exchange (PDBx) macromolecular Crystallographic Information Framework (mmCIF), has become the data standard for structural biology. With its early roots in the domain of small-molecule crystallography, PDBx/mmCIF provides an extensible data representation that is used for deposition, archiving, remediation, and public dissemination of experimentally determined three-dimensional (3D) structures of biological macromolecules by the Worldwide Protein Data Bank (wwPDB, wwpdb.org). Extensions of PDBx/mmCIF are similarly used for computed structure models by ModelArchive (modelarchive.org), integrative/hybrid structures by PDB-Dev (pdb-dev.wwpdb.org), small angle scattering data by Small Angle Scattering Biological Data Bank SASBDB (sasbdb.org), and for models computed generated with the AlphaFold 2.0 deep learning software suite (alphafold.ebi.ac.uk). Community-driven development of PDBx/mmCIF spans three decades, involving contributions from researchers, software and methods developers in structural sciences, data repository providers, scientific publishers, and professional societies. Having a semantically rich and extensible data framework for representing a wide range of structural biology experimental and computational results, combined with expertly curated 3D biostructure data sets in public repositories, accelerates the pace of scientific discovery. Herein, we describe the architecture of the PDBx/mmCIF data standard, tools used to maintain representations of the data standard, governance, and processes by which data content standards are extended, plus community tools/software libraries available for processing and checking the integrity of PDBx/mmCIF data. Use cases exemplify how the members of the Worldwide Protein Data Bank have used PDBx/mmCIF as the foundation for its pipeline for delivering Findable, Accessible, Interoperable, and Reusable (FAIR) data to many millions of users worldwide.


Assuntos
Biologia Computacional , Cristalografia , Bases de Dados de Proteínas , Software , Substâncias Macromoleculares/química , Biologia Molecular , Conformação Proteica , Semântica
12.
Protein Sci ; 31(1): 187-208, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34676613

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the US National Science Foundation, National Institutes of Health, and Department of Energy, has served structural biologists and Protein Data Bank (PDB) data consumers worldwide since 1999. RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, is the US data center for the global PDB archive housing biomolecular structure data. RCSB PDB is also responsible for the security of PDB data, as the wwPDB-designated Archive Keeper. Annually, RCSB PDB serves tens of thousands of three-dimensional (3D) macromolecular structure data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) from all inhabited continents. RCSB PDB makes PDB data available from its research-focused RCSB.org web portal at no charge and without usage restrictions to millions of PDB data consumers working in every nation and territory worldwide. In addition, RCSB PDB operates an outreach and education PDB101.RCSB.org web portal that was used by more than 800,000 educators, students, and members of the public during calendar year 2020. This invited Tools Issue contribution describes (i) how the archive is growing and evolving as new experimental methods generate ever larger and more complex biomolecular structures; (ii) the importance of data standards and data remediation in effective management of the archive and facile integration with more than 50 external data resources; and (iii) new tools and features for 3D structure analysis and visualization made available during the past year via the RCSB.org web portal.


Assuntos
Biologia Computacional/história , Bases de Dados de Proteínas/história , Interface Usuário-Computador , Aniversários e Eventos Especiais , História do Século XX , História do Século XXI
13.
Acta Crystallogr D Struct Biol ; 77(Pt 12): 1486-1496, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866606

RESUMO

Structures of many complex biological assemblies are increasingly determined using integrative approaches, in which data from multiple experimental methods are combined. A standalone system, called PDB-Dev, has been developed for archiving integrative structures and making them publicly available. Here, the data standards and software tools that support PDB-Dev are described along with the new and updated components of the PDB-Dev data-collection, processing and archiving infrastructure. Following the FAIR (Findable, Accessible, Interoperable and Reusable) principles, PDB-Dev ensures that the results of integrative structure determinations are freely accessible to everyone.


Assuntos
Bases de Dados de Proteínas , Armazenamento e Recuperação da Informação/métodos , Conformação Proteica , Proteínas/química
14.
IUCrJ ; 7(Pt 4): 630-638, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32695409

RESUMO

The Protein Data Bank (PDB) has grown from a small data resource for crystallographers to a worldwide resource serving structural biology. The history of the growth of the PDB and the role that the community has played in developing standards and policies are described. This article also illustrates how other biophysics communities are collaborating with the worldwide PDB to create a network of interoperating data resources. This network will expand the capabilities of structural biology and enable the determination and archiving of increasingly complex structures.

15.
Structure ; 27(12): 1745-1759, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31780431

RESUMO

Structures of biomolecular systems are increasingly computed by integrative modeling. In this approach, a structural model is constructed by combining information from multiple sources, including varied experimental methods and prior models. In 2019, a Workshop was held as a Biophysical Society Satellite Meeting to assess progress and discuss further requirements for archiving integrative structures. The primary goal of the Workshop was to build consensus for addressing the challenges involved in creating common data standards, building methods for federated data exchange, and developing mechanisms for validating integrative structures. The summary of the Workshop and the recommendations that emerged are presented here.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica , Proteínas/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética
16.
J Biomol NMR ; 73(6-7): 385-398, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31278630

RESUMO

Limitations in the applicability, accuracy, and precision of individual structure characterization methods can sometimes be overcome via an integrative modeling approach that relies on information from all available sources, including all available experimental data and prior models. The open-source Integrative Modeling Platform (IMP) is one piece of software that implements all computational aspects of integrative modeling. To maximize the impact of integrative structures, the coordinates should be made publicly available, as is already the case for structures based on X-ray crystallography, NMR spectroscopy, and electron microscopy. Moreover, the associated experimental data and modeling protocols should also be archived, such that the original results can easily be reproduced. Finally, it is essential that the integrative structures are validated as part of their publication and deposition. A number of research groups have already developed software to implement integrative modeling and have generated a number of structures, prompting the formation of an Integrative/Hybrid Methods Task Force. Following the recommendations of this task force, the existing PDBx/mmCIF data representation used for atomic PDB structures has been extended to address the requirements for archiving integrative structural models. This IHM-dictionary adds a flexible model representation, including coarse graining, models in multiple states and/or related by time or other order, and multiple input experimental information sources. A prototype archiving system called PDB-Dev ( https://pdb-dev.wwpdb.org ) has also been created to archive integrative structural models, together with a Python library to facilitate handling of integrative models in PDBx/mmCIF format.


Assuntos
Modelos Moleculares , Conformação Molecular , Software , Conformação Proteica , Proteínas/química , Fluxo de Trabalho
17.
J Thorac Oncol ; 14(11): 1982-1988, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31254668

RESUMO

INTRODUCTION: Osimertinib is an effective third-generation tyrosine kinase inhibitor (TKI) for EGFR-mutant lung cancers. However, treatment for patients with acquired resistance to osimertinib remains challenging. We characterized a novel EGFR mutation in exon 20 that was acquired while on osimertinib. METHODS: A 79-year-old woman had disease progression during third-line treatment with osimertinib for an EGFR L858R/T790M-mutant lung cancer. Sequencing of circulating cell-free DNA showed EGFR L858R, an acquired novel EGFR M766Q mutation in exon 20, and no evidence of EGFR T790M. Homology modeling was performed to investigate the effects of M766Q on binding to osimertinib. L858R and L858R/M766Q mutations were retrovirally introduced into Ba/F3 and NIH/3T3 cells and evaluated for sensitivity to first-generation (erlotinib), second-generation (afatinib, neratinib, and poziotinib), and third-generation TKIs (osimertinib) by cell viability and colony-formation assays. EGFR-mediated signaling pathways were interrogated by western blotting. RESULTS: Modeling suggested that EGFR M766Q could disrupt osimertinib binding. L858R/M766Q double-mutant cells were 12-fold more resistant to osimertinib, and more than 250-fold more resistant to erlotinib and afatinib, as compared to L858R-mutant cells. In contrast, double-mutant cells remained sensitive to neratinib and poziotinib at clinically relevant doses (concentration that inhibits 50%, 4.3 and 1.3 nM, respectively). This was corroborated by the effects of the TKIs on colony formation and EGFR signaling. CONCLUSIONS: Acquisition of EGFR M766Q exon 20 mutation is a novel mechanism of acquired resistance to osimertinib. EGFR-mutant lung cancers with an acquired EGFR M766Q mutation in the setting of osimertinib resistance may be sensitive to neratinib and poziotinib.


Assuntos
Acrilamidas/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Compostos de Anilina/farmacologia , Neoplasias Pulmonares/genética , Quinazolinas/farmacologia , Quinolinas/farmacologia , Adenocarcinoma de Pulmão/patologia , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Ensaio Tumoral de Célula-Tronco
18.
Mol Cell ; 70(3): 502-515.e8, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727620

RESUMO

Nutrients are not only organic compounds fueling bioenergetics and biosynthesis, but also key chemical signals controlling growth and metabolism. Nutrients enormously impact the production of reactive oxygen species (ROS), which play essential roles in normal physiology and diseases. How nutrient signaling is integrated with redox regulation is an interesting, but not fully understood, question. Herein, we report that superoxide dismutase 1 (SOD1) is a conserved component of the mechanistic target of rapamycin complex 1 (mTORC1) nutrient signaling. mTORC1 regulates SOD1 activity through reversible phosphorylation at S39 in yeast and T40 in humans in response to nutrients, which moderates ROS level and prevents oxidative DNA damage. We further show that SOD1 activation enhances cancer cell survival and tumor formation in the ischemic tumor microenvironment and protects against the chemotherapeutic agent cisplatin. Collectively, these findings identify a conserved mechanism by which eukaryotes dynamically regulate redox homeostasis in response to changing nutrient conditions.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nutrientes/metabolismo , Fosforilação/fisiologia , Superóxido Dismutase-1/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA/fisiologia , Metabolismo Energético/fisiologia , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
19.
Structure ; 26(6): 894-904.e2, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29657133

RESUMO

Essential processes in biology are carried out by large macromolecular assemblies, whose structures are often difficult to determine by traditional methods. Increasingly, researchers combine measured data and computed information from several complementary methods to obtain "hybrid" or "integrative" structural models of macromolecules and their assemblies. These integrative/hybrid (I/H) models are not archived in the PDB because of the absence of standard data representations and processing mechanisms. Here we present the development of data standards and a prototype system for archiving I/H models. The data standards provide the definitions required for representing I/H models that span multiple spatiotemporal scales and conformational states, as well as spatial restraints derived from different experimental techniques. Based on these data definitions, we have built a prototype system called PDB-Dev, which provides the infrastructure necessary to archive I/H structural models. PDB-Dev is now accepting structures and is open to the community for new submissions.


Assuntos
Bases de Dados de Proteínas , Substâncias Macromoleculares/química , Proteínas/química , Internet , Modelos Moleculares , Conformação Proteica
20.
Adv Exp Med Biol ; 1105: 261-272, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30617834

RESUMO

Integrative or hybrid structural biology involves the determination of three-dimensional structures of macromolecular assemblies by combining information from a variety of experimental and computational methods. Archiving the results of integrative/hybrid modeling methods have complex requirements and existing archiving mechanisms are insufficient to handle these pre-requisites. Three concepts important for archiving integrative/hybrid models are presented in this chapter: (1) building a federated network of structural model and experimental data archives, (2) development of a common set of data standards, and (3) creation of mechanisms for interoperation and data exchange among the repositories in a federation. Methods proposed for achieving these objectives are also discussed.


Assuntos
Substâncias Macromoleculares/química , Modelos Moleculares , Biologia Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...