Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4150, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755164

RESUMO

Age-related neurodegenerative diseases involving amyloid aggregation remain one of the biggest challenges of modern medicine. Alterations in the gastrointestinal microbiome play an active role in the aetiology of neurological disorders. Here, we dissect the amyloidogenic properties of biofilm-associated proteins (BAPs) of the gut microbiota and their implications for synucleinopathies. We demonstrate that BAPs are naturally assembled as amyloid-like fibrils in insoluble fractions isolated from the human gut microbiota. We show that BAP genes are part of the accessory genomes, revealing microbiome variability. Remarkably, the abundance of certain BAP genes in the gut microbiome is correlated with Parkinson's disease (PD) incidence. Using cultured dopaminergic neurons and Caenorhabditis elegans models, we report that BAP-derived amyloids induce α-synuclein aggregation. Our results show that the chaperone-mediated autophagy is compromised by BAP amyloids. Indeed, inoculation of BAP fibrils into the brains of wild-type mice promote key pathological features of PD. Therefore, our findings establish the use of BAP amyloids as potential targets and biomarkers of α-synucleinopathies.


Assuntos
Amiloide , Biofilmes , Caenorhabditis elegans , Neurônios Dopaminérgicos , Microbioma Gastrointestinal , Doença de Parkinson , alfa-Sinucleína , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Humanos , Biofilmes/crescimento & desenvolvimento , Amiloide/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/microbiologia , Doença de Parkinson/patologia , Camundongos , Neurônios Dopaminérgicos/metabolismo , Autofagia , Doenças Neurodegenerativas/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Encéfalo/metabolismo , Encéfalo/patologia , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
2.
Microorganisms ; 10(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014056

RESUMO

The first published observations that microorganisms associate to form microbial communities structured as biofilms in natural environments date back to the first half of the last century [...].

3.
NPJ Biofilms Microbiomes ; 8(1): 62, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35909185

RESUMO

Biofilm engineering has emerged as a controllable way to fabricate living structures with programmable functionalities. The amyloidogenic proteins comprising the biofilms can be engineered to create self-assembling extracellular functionalized surfaces. In this regard, facultative amyloids, which play a dual role in biofilm formation by acting as adhesins in their native conformation and as matrix scaffolds when they polymerize into amyloid-like fibrillar structures, are interesting candidates. Here, we report the use of the facultative amyloid-like Bap protein of Staphylococcus aureus as a tool to decorate the extracellular biofilm matrix or the bacterial cell surface with a battery of functional domains or proteins. We demonstrate that the localization of the functional tags can be change by simply modulating the pH of the medium. Using Bap features, we build a tool for trapping and covalent immobilizing molecules at bacterial cell surface or at the biofilm matrix based on the SpyTag/SpyCatcher system. Finally, we show that the cell wall of several Gram-positive bacteria could be functionalized through the external addition of the recombinant engineered Bap-amyloid domain. Overall, this work shows a simple and modulable system for biofilm functionalization based on the facultative protein Bap.


Assuntos
Proteínas de Bactérias , Infecções Estafilocócicas , Amiloide/metabolismo , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia
4.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009002

RESUMO

Bacterial genomes are pervasively transcribed, generating a wide variety of antisense RNAs (asRNAs). Many of them originate from transcriptional read-through events (TREs) during the transcription termination process. Previous transcriptome analyses revealed that the lexA gene from Staphylococcus aureus, which encodes the main SOS response regulator, is affected by the presence of an asRNA. Here, we show that the lexA antisense RNA (lexA-asRNA) is generated by a TRE on the intrinsic terminator (TTsbrB) of the sbrB gene, which is located downstream of lexA, in the opposite strand. Transcriptional read-through occurs by a natural mutation that destabilizes the TTsbrB structure and modifies the efficiency of the intrinsic terminator. Restoring the mispairing mutation in the hairpin of TTsbrB prevented lexA-asRNA transcription. The level of lexA-asRNA directly correlated with cellular stress since the expressions of sbrB and lexA-asRNA depend on the stress transcription factor SigB. Comparative analyses revealed strain-specific nucleotide polymorphisms within TTsbrB, suggesting that this TT could be prone to accumulating natural mutations. A genome-wide analysis of TREs suggested that mispairings in TT hairpins might provide wider transcriptional connections with downstream genes and, ultimately, transcriptomic variability among S. aureus strains.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , RNA Antissenso/genética , Serina Endopeptidases/genética , Staphylococcus aureus/genética , Terminação da Transcrição Genética , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Sequência de Bases , Genes Reporter , Conformação de Ácido Nucleico , Mutação Puntual , Processamento de Proteína Pós-Traducional , RNA Antissenso/química
5.
Antibiotics (Basel) ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210036

RESUMO

The choice of an effective therapeutic strategy in the treatment of biofilm-related infections is a significant issue. Amyloids, which have been historically related to human diseases, are now considered to be prevailing structural components of the biofilm matrix in a wide range of bacteria. This assumption creates the potential for an exciting research area, in which functional amyloids are considered to be attractive targets for drug development to dissemble biofilm structures. The present review describes the best-characterized bacterial functional amyloids and focuses on anti-biofilm agents that target intrinsic and facultative amyloids. This study provides a better understanding of the different modes of actions of the anti-amyloid molecules to inhibit biofilm formation. This information can be further exploited to improve the therapeutic strategies to combat biofilm-related infections.

6.
EMBO J ; 40(14): e107500, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34046916

RESUMO

The Staphylococcal Bap proteins sense environmental signals (such as pH, [Ca2+ ]) to build amyloid scaffold biofilm matrices via unknown mechanisms. We here report the crystal structure of the aggregation-prone region of Staphylococcus aureus Bap which adopts a dumbbell-shaped fold. The middle module (MM) connecting the N-terminal and C-terminal lobes consists of a tandem of novel double-Ca2+ -binding motifs involved in cooperative interaction networks, which undergoes Ca2+ -dependent order-disorder conformational switches. The N-terminal lobe is sufficient to mediate amyloid aggregation through liquid-liquid phase separation and maturation, and subsequent biofilm formation under acidic conditions. Such processes are promoted by disordered MM at low [Ca2+ ] but inhibited by ordered MM stabilized by Ca2+ binding, with inhibition efficiency depending on structural integrity of the interaction networks. These studies illustrate a novel protein switch in pathogenic bacteria and provide insights into the mechanistic understanding of Bap proteins in modulation of functional amyloid and biofilm formation, which could be implemented in the anti-biofilm drug design.


Assuntos
Amiloide/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Cálcio/metabolismo , Agregação Celular/fisiologia
7.
Sci Rep ; 10(1): 18968, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144670

RESUMO

The opportunistic pathogen Staphylococcus aureus is responsible for causing infections related to indwelling medical devices, where this pathogen is able to attach and form biofilms. The intrinsic properties given by the self-produced extracellular biofilm matrix confer high resistance to antibiotics, triggering infections difficult to treat. Therefore, novel antibiofilm strategies targeting matrix components are urgently needed. The Biofilm Associated Protein, Bap, expressed by staphylococcal species adopts functional amyloid-like structures as scaffolds of the biofilm matrix. In this work we have focused on identifying agents targeting Bap-related amyloid-like aggregates as a strategy to combat S. aureus biofilm-related infections. We identified that the flavonoids, quercetin, myricetin and scutellarein specifically inhibited Bap-mediated biofilm formation of S. aureus and other staphylococcal species. By using in vitro aggregation assays and the cell-based methodology for generation of amyloid aggregates based on the Curli-Dependent Amyloid Generator system (C-DAG), we demonstrated that these polyphenols prevented the assembly of Bap-related amyloid-like structures. Finally, using an in vivo catheter infection model, we showed that quercetin and myricetin significantly reduced catheter colonization by S. aureus. These results support the use of polyphenols as anti-amyloids molecules that can be used to treat biofilm-related infections.


Assuntos
Amiloide/metabolismo , Biofilmes/efeitos dos fármacos , Flavonoides/farmacologia , Antibacterianos/farmacologia , Apigenina/farmacologia , Proteínas de Bactérias/metabolismo , Quercetina/farmacologia , Staphylococcus aureus/efeitos dos fármacos
8.
NPJ Biofilms Microbiomes ; 6(1): 15, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221298

RESUMO

Functional amyloids are considered as common building block structures of the biofilm matrix in different bacteria. In previous work, we have shown that the staphylococcal surface protein Bap, a member of the Biofilm-Associated Proteins (BAP) family, is processed and the fragments containing the N-terminal region become aggregation-prone and self-assemble into amyloid-like structures. Here, we report that Esp, a Bap-orthologous protein produced by Enterococcus faecalis, displays a similar amyloidogenic behavior. We demonstrate that at acidic pH the N-terminal region of Esp forms aggregates with an amyloid-like conformation, as evidenced by biophysical analysis and the binding of protein aggregates to amyloid-indicative dyes. Expression of a chimeric protein, with its Esp N-terminal domain anchored to the cell wall through the R domain of clumping factor A, showed that the Esp N-terminal region is sufficient to confer multicellular behavior through the formation of an extracellular amyloid-like material. These results suggest that the mechanism of amyloid-like aggregation to build the biofilm matrix might be widespread among BAP-like proteins. This amyloid-based mechanism may not only have strong relevance for bacteria lifestyle but could also contribute to the amyloid burden to which the human physiology is potentially exposed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Enterococcus faecalis/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Amiloide/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/genética , Enterococcus faecalis/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Agregados Proteicos , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
9.
Front Microbiol ; 11: 613581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424817

RESUMO

One of the major components of the staphylococcal biofilm is surface proteins that assemble as scaffold components of the biofilm matrix. Among the different surface proteins able to contribute to biofilm formation, this review is dedicated to the Biofilm Associated Protein (Bap). Bap is part of the accessory genome of Staphylococcus aureus but orthologs of Bap in other staphylococcal species belong to the core genome. When present, Bap promotes adhesion to abiotic surfaces and induces strong intercellular adhesion by self-assembling into amyloid like aggregates in response to the levels of calcium and the pH in the environment. During infection, Bap enhances the adhesion to epithelial cells where it binds directly to the host receptor Gp96 and inhibits the entry of the bacteria into the cells. To perform such diverse range of functions, Bap comprises several domains, and some of them include several motifs associated to distinct functions. Based on the knowledge accumulated with the Bap protein of S. aureus, this review aims to summarize the current knowledge of the structure and properties of each domain of Bap and their contribution to Bap functionality.

10.
J Bacteriol ; 201(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30858304

RESUMO

Staphylococcus aureus clinical strains are able to produce at least two distinct types of biofilm matrixes: biofilm matrixes made of the polysaccharide intercellular adhesin (PIA) or poly-N-acetylglucosamine (PNAG), whose synthesis is mediated by the icaADBC locus, and biofilm matrixes built of proteins (polysaccharide independent). σB is a conserved alternative sigma factor that regulates the expression of more than 100 genes in response to changes in environmental conditions. While numerous studies agree that σB is required for polysaccharide-independent biofilms, controversy persists over the role of σB in the regulation of PIA/PNAG-dependent biofilm development. Here, we show that genetically unrelated S. aureus σB-deficient strains produced stronger biofilms under both static and flow conditions and accumulated higher levels of PIA/PNAG exopolysaccharide than their corresponding wild-type strains. The increased accumulation of PIA/PNAG in the σB mutants correlated with a greater accumulation of the IcaC protein showed that it was not due to adjustments in icaADBC operon transcription and/or icaADBC mRNA stability. Overall, our results reveal that in the presence of active σB, the turnover of Ica proteins is accelerated, reducing the synthesis of PIA/PNAG exopolysaccharide and consequently the PIA/PNAG-dependent biofilm formation capacity.IMPORTANCE Due to its multifaceted lifestyle, Staphylococcus aureus needs a complex regulatory network to connect environmental signals with cellular physiology. One particular transcription factor, named σB (SigB), is involved in the general stress response and the expression of virulence factors. For many years, great confusion has existed about the role of σB in the regulation of the biofilm lifestyle in S. aureus Our study demonstrated that σB is not necessary for exopolysaccharide-dependent biofilms and, even more, that S. aureus produces stronger biofilms in the absence of σB The increased accumulation of exopolysaccharide correlates with higher stability of the proteins responsible for its synthesis. The present findings reveal an additional regulatory layer to control biofilm exopolysaccharide synthesis under stress conditions.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos/biossíntese , RNA Mensageiro/genética , Fator sigma/genética , Staphylococcus aureus/genética , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Óperon , Polissacarídeos Bacterianos/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , Fator sigma/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/metabolismo , Transcrição Gênica
11.
Front Microbiol ; 9: 342, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29563900

RESUMO

Two-component systems (TCS) are modular signal transduction pathways that allow cells to adapt to prevailing environmental conditions by modifying cellular physiology. Staphylococcus aureus has 16 TCSs to adapt to the diverse microenvironments encountered during its life cycle, including host tissues and implanted medical devices. S. aureus is particularly prone to cause infections associated to medical devices, whose surfaces coated by serum proteins constitute a particular environment. Identification of the TCSs involved in the adaptation of S. aureus to colonize and survive on the surface of implanted devices remains largely unexplored. Here, using an in vivo catheter infection model and a collection of mutants in each non-essential TCS of S. aureus, we investigated the requirement of each TCS for colonizing the implanted catheter. Among the 15 mutants in non-essential TCSs, the arl mutant exhibited the strongest deficiency in the capacity to colonize implanted catheters. Moreover, the arl mutant was the only one presenting a major deficit in PNAG production, the main exopolysaccharide of the S. aureus biofilm matrix whose synthesis is mediated by the icaADBC locus. Regulation of PNAG synthesis by ArlRS occurred through repression of IcaR, a transcriptional repressor of icaADBC operon expression. Deficiency in catheter colonization was restored when the arl mutant was complemented with the icaADBC operon. MgrA, a global transcriptional regulator downstream ArlRS that accounts for a large part of the arlRS regulon, was unable to restore PNAG expression and catheter colonization deficiency of the arlRS mutant. These findings indicate that ArlRS is the key TCS to biofilm formation on the surface of implanted catheters and that activation of PNAG exopolysaccharide production is, among the many traits controlled by the ArlRS system, a major contributor to catheter colonization.

12.
Nat Commun ; 9(1): 523, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410457

RESUMO

Bacteria use two-component systems (TCSs) to sense and respond to environmental changes. The core genome of the major human pathogen Staphylococcus aureus encodes 16 TCSs, one of which (WalRK) is essential. Here we show that S. aureus can be deprived of its complete sensorial TCS network and still survive under growth arrest conditions similarly to wild-type bacteria. Under replicating conditions, however, the WalRK system is necessary and sufficient to maintain bacterial growth, indicating that sensing through TCSs is mostly dispensable for living under constant environmental conditions. Characterization of S. aureus derivatives containing individual TCSs reveals that each TCS appears to be autonomous and self-sufficient to sense and respond to specific environmental cues, although some level of cross-regulation between non-cognate sensor-response regulator pairs occurs in vivo. This organization, if confirmed in other bacterial species, may provide a general evolutionarily mechanism for flexible bacterial adaptation to life in new niches.


Assuntos
Staphylococcus aureus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento
13.
PLoS One ; 12(8): e0182084, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28763494

RESUMO

Many strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978.


Assuntos
Acinetobacter baumannii/genética , Biofilmes , Perfilação da Expressão Gênica , Pequeno RNA não Traduzido/genética , Células A549 , Acinetobacter baumannii/fisiologia , Linhagem Celular Tumoral , DNA Complementar/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Microscopia Eletrônica de Varredura , RNA Bacteriano/genética , Virulência
14.
PLoS Genet ; 13(5): e1006816, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542593

RESUMO

Many bacteria build biofilm matrices using a conserved exopolysaccharide named PGA or PNAG (poly-ß-1,6-N-acetyl-D-glucosamine). Interestingly, while E. coli and other members of the family Enterobacteriaceae encode the pgaABCD operon responsible for PGA synthesis, Salmonella lacks it. The evolutionary force driving this difference remains to be determined. Here, we report that Salmonella lost the pgaABCD operon after the divergence of Salmonella and Citrobacter clades, and previous to the diversification of the currently sequenced Salmonella strains. Reconstitution of the PGA machinery endows Salmonella with the capacity to produce PGA in a cyclic dimeric GMP (c-di-GMP) dependent manner. Outside the host, the PGA polysaccharide does not seem to provide any significant benefit to Salmonella: resistance against chlorine treatment, ultraviolet light irradiation, heavy metal stress and phage infection remained the same as in a strain producing cellulose, the main biofilm exopolysaccharide naturally produced by Salmonella. In contrast, PGA production proved to be deleterious to Salmonella survival inside the host, since it increased susceptibility to bile salts and oxidative stress, and hindered the capacity of S. Enteritidis to survive inside macrophages and to colonize extraintestinal organs, including the gallbladder. Altogether, our observations indicate that PGA is an antivirulence factor whose loss may have been a necessary event during Salmonella speciation to permit survival inside the host.


Assuntos
Adaptação Fisiológica , Polissacarídeos Bacterianos/deficiência , Salmonella enterica/genética , Acetilglucosamina/genética , Acetilglucosamina/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrófagos/microbiologia , Camundongos , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidade , Virulência/genética
15.
PLoS Pathog ; 12(6): e1005711, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27327765

RESUMO

Biofilms are communities of bacteria that grow encased in an extracellular matrix that often contains proteins. The spatial organization and the molecular interactions between matrix scaffold proteins remain in most cases largely unknown. Here, we report that Bap protein of Staphylococcus aureus self-assembles into functional amyloid aggregates to build the biofilm matrix in response to environmental conditions. Specifically, Bap is processed and fragments containing at least the N-terminus of the protein become aggregation-prone and self-assemble into amyloid-like structures under acidic pHs and low concentrations of calcium. The molten globule-like state of Bap fragments is stabilized upon binding of the cation, hindering its self-assembly into amyloid fibers. These findings define a dual function for Bap, first as a sensor and then as a scaffold protein to promote biofilm development under specific environmental conditions. Since the pH-driven multicellular behavior mediated by Bap occurs in coagulase-negative staphylococci and many other bacteria exploit Bap-like proteins to build a biofilm matrix, the mechanism of amyloid-like aggregation described here may be widespread among pathogenic bacteria.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Immunoblotting , Camundongos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo
16.
J Bacteriol ; 198(19): 2579-88, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27185827

RESUMO

Recent insights into bacterial biofilm matrix structures have induced a paradigm shift toward the recognition of amyloid fibers as common building block structures that confer stability to the exopolysaccharide matrix. Here we describe the functional amyloid systems related to biofilm matrix formation in both Gram-negative and Gram-positive bacteria and recent knowledge regarding the interaction of amyloids with other biofilm matrix components such as extracellular DNA (eDNA) and the host immune system. In addition, we summarize the efforts to identify compounds that target amyloid fibers for therapeutic purposes and recent developments that take advantage of the amyloid structure to engineer amyloid fibers of bacterial biofilm matrices for biotechnological applications.


Assuntos
Amiloide/química , Proteínas de Bactérias/fisiologia , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano , Regulação Bacteriana da Expressão Gênica
17.
Virulence ; 7(4): 443-55, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-26854744

RESUMO

Acinetobacter baumannii is a nosocomial pathogen that has a considerable ability to survive in the hospital environment partly due to its capacity to form biofilms. The first step in the process of establishing an infection is adherence of the bacteria to target cells. Chaperone-usher pili assembly systems are involved in pilus biogenesis pathways that play an important role in adhesion to host cells and tissues as well as medically relevant surfaces. After screening a collection of strains, a biofilm hyper-producing A. baumannii strain (MAR002) was selected to describe potential targets involved in pathogenicity. MAR002 showed a remarkable ability to form biofilm and attach to A549 human alveolar epithelial cells. Analysis of MAR002 using transmission electron microscopy (TEM) showed a significant presence of pili on the bacterial surface. Putative protein-coding genes involved in pili formation were identified based on the newly sequenced genome of MAR002 strain (JRHB01000001/2 or NZ_JRHB01000001/2). As assessed by qRT-PCR, the gene LH92_11085, belonging to the operon LH92_11070-11085, is overexpressed (ca. 25-fold more) in biofilm-associated cells compared to exponential planktonic cells. In the present work we investigate the role of this gene on the MAR002 biofilm phenotype. Scanning electron microscopy (SEM) and biofilm assays showed that inactivation of LH92_11085 gene significantly reduced bacterial attachment to A549 cells and biofilm formation on plastic, respectively. TEM analysis of the LH92_11085 mutant showed the absence of long pili formations normally present in the wild-type. These observations indicate the potential role this LH92_11085 gene could play in the pathobiology of A baumannii.


Assuntos
Acinetobacter baumannii/genética , Acinetobacter baumannii/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Células A549 , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/ultraestrutura , Células Epiteliais Alveolares/microbiologia , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/genética , Genes Bacterianos , Humanos , Microscopia Eletrônica de Varredura , Virulência/genética
18.
Macromol Biosci ; 15(8): 1060-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25914260

RESUMO

Modification of the biomaterial surface topography is a promising strategy to prevent bacterial adhesion and biofilm formation. In this study, we use direct laser interference patterning (DLIP) to modify polystyrene surface topography at sub-micrometer scale. The results revealed that three-dimensional micrometer structures have a profound impact on bacterial adhesion. Thus, line- and pillar-like patterns enhanced S. aureus adhesion, whereas complex lamella microtopography reduced S. aureus adhesion in static and continuous flow culture conditions. Interestingly, lamella-like textured surfaces retained the capacity to inhibit S. aureus adhesion both when the surface is coated with human serum proteins and when the material is implanted subcutaneously in a foreign-body associated infection model.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Poliestirenos/química , Staphylococcus aureus/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Incrustação Biológica , Proteínas Sanguíneas/química , Humanos , Lasers , Poliestirenos/farmacologia , Staphylococcus aureus/química , Staphylococcus aureus/patogenicidade , Propriedades de Superfície
19.
PLoS One ; 10(4): e0123154, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25894755

RESUMO

Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/fisiologia , Interações Hospedeiro-Patógeno , Sistema Respiratório/microbiologia , Infecções Respiratórias/microbiologia , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/metabolismo , Aderência Bacteriana , Carga Bacteriana , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/química , Técnicas de Tipagem Bacteriana , Biofilmes/crescimento & desenvolvimento , Moléculas de Adesão Celular/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Genes Bacterianos , Glicosilação , Infecções por Haemophilus/patologia , Haemophilus influenzae/genética , Humanos , Integrina alfa5/metabolismo , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Camundongos , Dados de Sequência Molecular , Mutação/genética , Sistema Respiratório/patologia , Infecções Respiratórias/patologia , Serina Endopeptidases/química
20.
Acta Biomater ; 10(7): 2935-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24632360

RESUMO

Biomaterial-associated infection is one of the most common complications related to the implantation of any biomedical device. Several in vivo imaging platforms have emerged as powerful diagnostic tools to longitudinally monitor biomaterial-associated infections in small animal models. In this study, we directly compared two imaging approaches: bacteria engineered to produce luciferase to generate bioluminescence and reactive oxygen species (ROS) imaging of the inflammatory response associated with the infected implant. We performed longitudinal imaging of bioluminescence associated with bacteria strains expressing plasmid-integrated luciferase driven by different promoters or a strain with the luciferase gene integrated into the chromosome. These luminescent strains provided an adequate signal for acute (0-4 days) monitoring of the infection, but the bioluminescence signal decreased over time and leveled off at 7 days post-implantation. This loss in the bioluminescence signal was attributed to changes in the metabolic activity of the bacteria. In contrast, near-infrared fluorescence imaging of ROS associated with inflammation to the implant provided sensitive and dose-dependent signals of biomaterial-associated bacteria. ROS imaging exhibited higher sensitivity than the bioluminescence imaging and was independent of the bacteria strain. Near-infrared fluorescence imaging of inflammatory responses represents a powerful alternative to bioluminescence imaging for monitoring biomaterial-associated bacterial infections.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Infecções/etiologia , Staphylococcus aureus/metabolismo , Animais , Fluorescência , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...