Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(19): 5722-5728, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712788

RESUMO

Quantum dots (QDs) with metal fluoride surface ligands were prepared via reaction with anhydrous oleylammonium fluoride. Carboxylate terminated II-VI QDs underwent carboxylate for fluoride exchange, while InP QDs underwent photochemical acidolysis yielding oleylamine, PH3, and InF3. The final photoluminescence quantum yield (PLQY) reached 83% for InP and near unity for core-shell QDs. Core-only CdS QDs showed dramatic improvements in PLQY, but only after exposure to air. Following etching, the InP QDs were bound by oleylamine ligands that were characterized by the frequency and breadth of the corresponding ν(N-H) bands in the infrared absorption spectrum. The fluoride content (1.6-9.2 nm-2) was measured by titration with chlorotrimethylsilane and compared with the oleylamine content (2.3-5.1 nm-2) supporting the formation of densely covered surfaces. The influence of metal fluoride adsorption on the air stability of QDs is discussed.

2.
Adv Mater ; 33(38): e2103411, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34339063

RESUMO

The architecture of Zn-Al layered double hydroxides (LDHs), organo-modified with bola-amphiphiles molecules, is matching its interlayer space to the size of narrow-band red-emitting InP/ZnS core-shell quantum dots (QDs) to form original high-performance functional organic-inorganic QD-bola-LDH hybrids. The success of size-matching interlayer space (SMIS) approach is confirmed by X-ray diffraction, small angle X-ray scattering (SAXS), TEM, STEM-HAADF, and photoluminescence investigations. The QD-Bola-LDH hybrid exhibits a photoluminescence quantum yield three times higher than that of pristine InP/ZnS QDs and provides an easy dispersion into silicone-based resins, what makes the SMIS approach a change of paradigm compared to intercalation chemistry using common host structures. Moreover, this novel hybrid presents low QD-QD energy transfer comparable to that obtained for QDs in suspension. Composite silicone films incorporating InP/ZnS (0.27 wt%) QD-bola-LDH hybrids further show remarkable improved photostability relative to pristine QDs. An LED overlay consisting of a blue LED chip and silicone films loaded with QD-bola-LDH hybrids and YAG:Ce phosphors exhibits a color rendering index close to 94.

3.
J Mater Chem B ; 9(36): 7423-7434, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34373887

RESUMO

Over the last decade, upconversion nanoparticles (UCNP) have been widely investigated in nanomedicine due to their high potential as imaging agents in the near-infrared (NIR) optical window of biological tissues. Here, we successfully develop active targeted UCNP as potential probes for dual NIR-NIR fluorescence and radioactive-guided surgery of prostate-specific membrane antigen (PSMA)(+) prostate cancers. We designed a one-pot thermolysis synthesis method to obtain oleic acid-coated spherical NaYF4:Yb,Tm@NaYF4 core/shell UCNP with narrow particle size distribution (30.0 ± 0.1 nm, as estimated by SAXS analysis) and efficient upconversion luminescence. Polyethylene glycol (PEG) ligands bearing different anchoring groups (phosphate, bis- and tetra-phosphonate-based) were synthesized and used to hydrophilize the UCNP. DLS studies led to the selection of a tetra-phosphonate PEG(2000) ligand affording water-dispersible UCNP with sustained colloidal stability in several aqueous media. PSMA-targeting ligands (i.e., glutamate-urea-lysine derivatives called KuEs) and fluorescent or radiolabelled prosthetic groups were grafted onto the UCNP surface by strain-promoted azide-alkyne cycloaddition (SPAAC). These UCNP, coated with 10 or 100% surface density of KuE ligands, did not induce cytotoxicity over 24 h incubation in LNCaP-Luc or PC3-Luc prostate cancer cell lines or in human fibroblasts for any of the concentrations evaluated. Competitive binding assays and flow cytometry demonstrated the excellent affinity of UCNP@KuE for PSMA-positive LNCaP-Luc cells compared with non-targeted UCNP@CO2H. Furthermore, the binding of UCNP@KuE to prostate tumour cells was positively correlated with the surface density of PSMA-targeting ligands and maintained after 125I-radiolabelling. Finally, a preliminary biodistribution study in LNCaP-Luc-bearing mice demonstrated the radiochemical stability of non-targeted [125I]UCNP paving the way for future in vivo assessments.


Assuntos
Antígenos de Superfície/metabolismo , Materiais Revestidos Biocompatíveis/química , Glutamato Carboxipeptidase II/metabolismo , Nanopartículas de Magnetita/química , Animais , Antígenos de Superfície/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/metabolismo , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/uso terapêutico , Reação de Cicloadição , Fluoretos/química , Glutamato Carboxipeptidase II/química , Humanos , Ligantes , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/toxicidade , Masculino , Camundongos , Ácidos Oleicos/química , Imagem Óptica , Tamanho da Partícula , Polietilenoglicóis/química , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Túlio/química , Distribuição Tecidual , Itérbio/química , Ítrio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...