Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773949

RESUMO

Bees use thoracic vibrations produced by their indirect flight muscles for powering wingbeats in flight, but also during mating, pollination, defence, and nest building. Previous work on non-flight vibrations has mostly focused on acoustic (airborne vibrations) and spectral properties (frequency domain). However, mechanical properties such as the vibration's acceleration amplitude are important in some behaviours, e.g., during buzz pollination, where higher amplitude vibrations remove more pollen from flowers. Bee vibrations have been studied in only a handful of species and we know very little about how they vary among species. Here, we conduct the largest survey to date of the biomechanical properties of non-flight bee buzzes. We focus on defence buzzes as they can be induced experimentally and provide a common currency to compare among taxa. We analysed 15,000 buzzes produced by 306 individuals in 65 species and six families from Mexico, Scotland, and Australia. We found a strong association between body size and the acceleration amplitude of bee buzzes. Comparison of genera that buzz-pollinate and those that do not suggests that buzz-pollinating bees produce vibrations with higher acceleration amplitude. We found no relationship between bee size and the fundamental frequency of defence buzzes. Although our results suggest that body size is a major determinant of the amplitude of non-flight vibrations, we also observed considerable variation in vibration properties among bees of equivalent size and even within individuals. Both morphology and behaviour thus affect the biomechanical properties of non-flight buzzes.

2.
Ann Bot ; 133(3): 379-398, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38071461

RESUMO

Buzz pollination, a type of interaction in which bees use vibrations to extract pollen from certain kinds of flowers, captures a close relationship between thousands of bee and plant species. In the last 120 years, studies of buzz pollination have contributed to our understanding of the natural history of buzz pollination, and basic properties of the vibrations produced by bees and applied to flowers in model systems. Yet, much remains to be done to establish its adaptive significance and the ecological and evolutionary dynamics of buzz pollination across diverse plant and bee systems. Here, we review for bees and plants the proximate (mechanism and ontogeny) and ultimate (adaptive significance and evolution) explanations for buzz pollination, focusing especially on integrating across these levels to synthesize and identify prominent gaps in our knowledge. Throughout, we highlight new technical and modelling approaches and the importance of considering morphology, biomechanics and behaviour in shaping our understanding of the adaptive significance of buzz pollination. We end by discussing the ecological context of buzz pollination and how a multilevel perspective can contribute to explain the proximate and evolutionary reasons for this ancient bee-plant interaction.


Assuntos
Polinização , Vibração , Abelhas , Animais , Pólen , Flores , Plantas
3.
AoB Plants ; 15(4): plad049, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37560761

RESUMO

Floral scents shape plant-pollinator interactions. Although populations of the same species can vary in their floral scent, little is known about how this variation affects pollinator visitation. In this study, we compare the scents emitted by buzz-pollinated Solanum rostratum (Solanaceae) in two areas of its distribution (Mexico and USA) and investigate how these differences in scent affect pollinator preferences and attraction. We determined the variation of floral volatile compounds using hexane extraction followed by gas chromatography coupled with spectrometry. We also performed a field cage multiple-choice bioassay and a Y-tube behavioural bioassay using Bombus impatiens. We recorded 13 volatile compounds in floral extracts for plants from both ranges that varied qualitative and semi-quantitatively among populations. We found that in the field cage experiment, bumble bees visited plants from the US populations more frequently than plants from Mexican populations. However, bees showed no difference in preference between extracts from Mexican or US flowers. We conclude that although bees show differential visitation to whole plants of different regions, variation in floral extract alone does not translate into differences in preference by B. impatiens. The potential effects of variation in floral scent on the other native bee pollinators remain to be assessed.

5.
iScience ; 26(4): 106362, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37034980

RESUMO

Species diversity can vary dramatically across lineages due to differences in speciation and extinction rates. Here, we explore the effects of several plant traits on diversification, finding that most traits have opposing effects on diversification. For example, outcrossing may increase the efficacy of selection and adaptation but also decrease mate availability, two processes with contrasting effects on lineage persistence. Such opposing trait effects can manifest as differences in diversification rates that depend on ecological context, spatiotemporal scale, and associations with other traits. The complexity of pathways linking traits to diversification suggests that the mechanistic underpinnings behind their correlations may be difficult to interpret with any certainty, and context dependence means that the effects of specific traits on diversification are likely to differ across multiple lineages and timescales. This calls for taxonomically and context-controlled approaches to studies that correlate traits and diversification.

6.
Ecol Lett ; 26(4): 640-657, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36829296

RESUMO

Variation in species richness across the tree of life, accompanied by the incredible variety of ecological and morphological characteristics found in nature, has inspired many studies to link traits with species diversification. Angiosperms are a highly diverse group that has fundamentally shaped life on earth since the Cretaceous, and illustrate how species diversification affects ecosystem functioning. Numerous traits and processes have been linked to differences in species richness within this group, but we know little about their relative importance and how they interact. Here, we synthesised data from 152 studies that used state-dependent speciation and extinction (SSE) models on angiosperm clades. Intrinsic traits related to reproduction and morphology were often linked to diversification but a set of universal drivers did not emerge as traits did not have consistent effects across clades. Importantly, SSE model results were correlated to data set properties - trees that were larger, older or less well-sampled tended to yield trait-dependent outcomes. We compared these properties to recommendations for SSE model use and provide a set of best practices to follow when designing studies and reporting results. Finally, we argue that SSE model inferences should be considered in a larger context incorporating species' ecology, demography and genetics.


Assuntos
Evolução Biológica , Magnoliopsida , Filogenia , Ecossistema , Magnoliopsida/genética , Fenótipo , Especiação Genética , Biodiversidade
7.
Am J Bot ; 109(10): 1568-1578, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36193950

RESUMO

PREMISE: Floral orientation is central to plant-pollinator interactions and is commonly associated with floral symmetry. Bilaterally symmetrical flowers are often oriented horizontally for optimal pollinator positioning and pollen transfer efficiency, while the orientation of radially symmetrical flowers is variable. Buzz-pollinated species (pollinated by vibration-producing bees) include bilateral, horizontally oriented flowers, and radial, pendant flowers. The effect of floral orientation on pollen transfer has never been tested in buzz-pollinated species. METHODS: Here, we examined the effect of floral orientation on bumblebee-mediated pollen deposition in three buzz-pollinated Solanum species with different floral symmetry and natural orientations: S. lycopersicum and S. seaforthianum (radial, pendant), and S. rostratum (bilateral, horizontal). We tested whether orientation affects total stigmatic pollen deposition (both self and outcross pollen) when all flowers have the same orientation (either pendant or horizontal). In a second experiment, we evaluated whether different orientations of donor and recipient flowers affects the receipt of outcross pollen by S. rostratum. RESULTS: For the three Solanum species studied, there was no effect of floral orientation on total pollen deposition (both self and outcross) when flowers shared the same orientation. In contrast, in our experiment with S. rostratum, we found that pendant flowers received fewer outcross-pollen grains when paired with pendant donors. CONCLUSIONS: We suggest that floral orientation influences the quality of pollen transferred, with more outcross pollen transferred to horizontally oriented recipients in the bilaterally symmetrical S. rostratum. Whether other bilaterally symmetrical, buzz-pollinated flowers also benefit from increased cross-pollination when presented horizontally remains to be established.


Assuntos
Polinização , Solanum , Abelhas , Animais , Pólen , Flores
8.
Oecologia ; 200(1-2): 119-131, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35989366

RESUMO

A fundamental question in pollination ecology is how pollinators affect the evolution of different floral forms. Yet functional effects of shifts in floral form for plant and pollinator are frequently unclear. For instance, flowers that conceal pollen within tube-like anthers that are spread apart and move freely (free architecture) or are tightly joined together (joined architecture) have evolved independently across diverse plant families and are geographically widespread. Surprisingly, how their bee pollinators affect the function of both architectures remains unknown. We hypothesised that bee body size would affect foraging success and pollination differently for free and joined anther architectures. Therefore, we modified the anther architecture of a single plant species (Solanum elaeagnifolium) and used a single species of generalist bumble bee (Bombus impatiens), which varies greatly in body size. We found that on free anther architecture, larger bees were better pollinators. More pollen on their bodies was available for pollination and they deposited more pollen on stigmas. Conversely, on joined anther architecture, smaller bees were better pollinators. They collected less pollen into their pollen baskets, had more pollen on their bodies available for pollination, and deposited more pollen on stigmas. While we also found modest evidence that plants benefit more from joined versus free anther architecture, further investigation will likely reveal this also depends on pollinator traits. We discuss potential mechanisms by which pollinator size and anther architecture interact and implications for floral evolution.


Assuntos
Pólen , Polinização , Animais , Abelhas , Tamanho Corporal , Ecologia , Flores
9.
Evol Lett ; 6(2): 136-148, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386831

RESUMO

The rise of globalization has spread organisms beyond their natural range, allowing further opportunity for species to adapt to novel environments and potentially become invaders. Yet, the role of thermal niche evolution in promoting the success of invasive species remains poorly understood. Here, we use thermal performance curves (TPCs) to test hypotheses about thermal adaptation during the invasion process. First, we tested the hypothesis that if species largely conserve their thermal niche in the introduced range, invasive populations may not evolve distinct TPCs relative to native populations, against the alternative hypothesis that thermal niche and therefore TPC evolution has occurred in the invasive range. Second, we tested the hypothesis that clines of TPC parameters are shallower or absent in the invasive range, against the alternative hypothesis that with sufficient time, standing genetic variation, and temperature-mediated selection, invasive populations would re-establish clines found in the native range in response to temperature gradients. To test these hypotheses, we built TPCs for 18 native (United States) and 13 invasive (United Kingdom) populations of the yellow monkeyflower, Mimulus guttatus. We grew clones of multiple genotypes per population at six temperature regimes in growth chambers. We found that invasive populations have not evolved different thermal optima or performance breadths, providing evidence for evolutionary stasis of thermal performance between the native and invasive ranges after over 200 years post introduction. Thermal optimum increased with mean annual temperature in the native range, indicating some adaptive differentiation among native populations that was absent in the invasive range. Further, native and invasive populations did not exhibit adaptive clines in thermal performance breadth with latitude or temperature seasonality. These findings suggest that TPCs remained unaltered post invasion, and that invasion may proceed via broad thermal tolerance and establishment in already climatically suitable areas rather than rapid evolution upon introduction.

10.
Ecol Evol ; 12(4): e8784, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386882

RESUMO

Many plant species have floral morphologies that restrict access to floral resources, such as pollen or nectar, and only a subset of floral visitors can perform the handling behaviors required to extract restricted resources. Due to the time and energy required to extract resources from morphologically complex flowers, these plant species potentially compete for pollinators with co-flowering plants that have more easily accessible resources. A widespread floral mechanism restricting access to pollen is the presence of tubular anthers that open through small pores or slits (poricidal anthers). Some bees have evolved the capacity to remove pollen from poricidal anthers using vibrations, giving rise to the phenomenon of buzz-pollination. These bee vibrations that are produced for pollen extraction are presumably energetically costly, and to date, few studies have investigated whether buzz-pollinated flowers may be at a disadvantage when competing for pollinators' attention with plant species that present unrestricted pollen resources. Here, we studied Cyanella hyacinthoides (Tecophilaeaceae), a geophyte with poricidal anthers in the hyperdiverse Cape Floristic Region of South Africa, to assess how the composition and relative abundance of flowers with easily accessible pollen affect bee visitation to a buzz-pollinated plant. We found that the number of pollinator species of C. hyacinthoides was not influenced by community composition. However, visitation rates to C. hyacinthoides were reduced when the relative abundances of flowers with more accessible resources were high. Visitation rates were strongly associated with petal color, showing that flower color is important in mediating these interactions. We conclude that buzz-pollinated plants might be at a competitive disadvantage when many easily accessible pollen sources are available, particularly when competitor species share its floral signals.

11.
Evolution ; 76(5): 931-945, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35324004

RESUMO

The widespread evolution of tube-like anthers releasing pollen from apical pores is associated with buzz pollination, in which bees vibrate flowers to remove pollen. The mechanical connection among anthers in buzz-pollinated species varies from loosely held conformations, to anthers tightly held together with trichomes or bioadhesives forming a functionally joined conical structure (anther cone). Joined anther cones in buzz-pollinated species have evolved independently across plant families and via different genetic mechanisms, yet their functional significance remains mostly untested. We used experimental manipulations to compare vibrational and functional (pollen release) consequences of joined anther cones in three buzz-pollinated species of Solanum (Solanaceae). We applied bee-like vibrations to focal anthers in flowers with ("joined") and without ("free") experimentally created joined anther cones, and characterized vibrations transmitted to other anthers and the amount of pollen released. We found that joined anther architectures cause nonfocal anthers to vibrate at higher amplitudes than free architectures. Moreover, in the two species with naturally loosely held anthers, anther fusion increases pollen release, whereas in the species with a free but naturally compact architecture it does not. We discuss hypotheses for the adaptive significance of the convergent evolution of joined anther cones.


Assuntos
Solanum , Animais , Abelhas , Flores , Pólen , Polinização , Solanum/genética
12.
J Exp Bot ; 73(4): 1080-1092, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34537837

RESUMO

Buzz pollination encompasses the evolutionary convergence of specialized floral morphologies and pollinator behaviour in which bees use vibrations (floral buzzes) to remove pollen. Floral buzzes are one of several types of vibrations produced by bees using their thoracic muscles. Here I review how bees can produce these different types of vibrations and discuss the implications of this mechanistic understanding for buzz pollination. I propose that bee buzzes can be categorized according to their mode of production and deployment into: (i) thermogenic, which generate heat with little mechanical vibration; (ii) flight buzzes which, combined with wing deployment and thoracic vibration, power flight; and (iii) non-flight buzzes in which the thorax vibrates but the wings remain mostly folded, and include floral, defence, mating, communication, and nest-building buzzes. I hypothesize that the characteristics of non-flight buzzes, including floral buzzes, can be modulated by bees via modification of the biomechanical properties of the thorax through activity of auxiliary muscles, changing the rate of activation of the indirect flight muscles, and modifying flower handling behaviours. Thus, bees should be able to fine-tune mechanical properties of their floral vibrations, including frequency and amplitude, depending on flower characteristics and pollen availability to optimize energy use and pollen collection.


Assuntos
Pólen , Polinização , Animais , Abelhas , Flores/fisiologia , Reprodução , Vibração
14.
Am J Bot ; 108(6): 993-1005, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34196392

RESUMO

PREMISE: Plants can mitigate the fitness costs associated with pollen consumption by floral visitors by optimizing pollen release rates. In buzz-pollinated plants, bees apply vibrations to remove pollen from anthers with small pores. These poricidal anthers potentially function as mechanism staggering pollen release, but this has rarely been tested across plant species differing in anther morphology. METHODS: In Solanum Section Androceras, three pairs of buzz-pollinated species have undergone independent evolutionary shifts between large- and small-flowers, which are accompanied by replicate changes in anther morphology. We used these shifts in anther morphology to characterize the association between anther morphology and pollen dispensing schedules. We applied simulated bee-like vibrations to anthers to elicit pollen release, and compared pollen dispensing schedules across anther morphologies. We also investigated how vibration velocity affects pollen release. RESULTS: Replicate transitions in Solanum anther morphology are associated with consistent changes in pollen dispensing schedules. We found that small-flowered taxa release their pollen at higher rates than their large-flowered counterparts. Higher vibration velocities resulted in quicker pollen dispensing and more total pollen released. Finally, both the pollen dispensing rate and the amount of pollen released in the first vibration were negatively related to anther wall area, but we did not observe any association between pore size and pollen dispensing. CONCLUSIONS: Our results provide the first empirical demonstration that the pollen dispensing properties of poricidal anthers depend on both floral characteristics and bee vibration properties. Morphological modification of anthers could thus provide a mechanism to exploit different pollination environments.


Assuntos
Polinização , Solanum , Animais , Abelhas , Evolução Biológica , Flores , Pólen
15.
Sci Rep ; 11(1): 13541, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188153

RESUMO

In buzz-pollinated plants, bees apply thoracic vibrations to the flower, causing pollen release from anthers, often through apical pores. Bees grasp one or more anthers with their mandibles, and vibrations are transmitted to this focal anther(s), adjacent anthers, and the whole flower. Pollen release depends on anther vibration, and thus it should be affected by vibration transmission through flowers with distinct morphologies, as found among buzz-pollinated taxa. We compare vibration transmission between focal and non-focal anthers in four species with contrasting stamen architectures: Cyclamen persicum, Exacum affine, Solanum dulcamara and S. houstonii. We used a mechanical transducer to apply bee-like vibrations to focal anthers, measuring the vibration frequency and displacement amplitude at focal and non-focal anther tips simultaneously using high-speed video analysis (6000 frames per second). In flowers in which anthers are tightly arranged (C. persicum and S. dulcamara), vibrations in focal and non-focal anthers are indistinguishable in both frequency and displacement amplitude. In contrast, flowers with loosely arranged anthers (E. affine) including those with differentiated stamens (heterantherous S. houstonii), show the same frequency but higher displacement amplitude in non-focal anthers compared to focal anthers. We suggest that stamen architecture modulates vibration transmission, potentially affecting pollen release and bee behaviour.

16.
Plant Cell ; 33(7): 2235-2257, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33895820

RESUMO

Endosperm is an angiosperm innovation central to their reproduction whose development, and thus seed viability, is controlled by genomic imprinting, where expression from certain genes is parent-specific. Unsuccessful imprinting has been linked to failed inter-specific and inter-ploidy hybridization. Despite their importance in plant speciation, the underlying mechanisms behind these endosperm-based barriers remain poorly understood. Here, we describe one such barrier between diploid Mimulus guttatus and tetraploid Mimulus luteus. The two parents differ in endosperm DNA methylation, expression dynamics, and imprinted genes. Hybrid seeds suffer from underdeveloped endosperm, reducing viability, or arrested endosperm and seed abortion when M. guttatus or M. luteus is seed parent, respectively, and transgressive methylation and expression patterns emerge. The two inherited M. luteus subgenomes, genetically distinct but epigenetically similar, are expressionally dominant over the M. guttatus genome in hybrid embryos and especially their endosperm, where paternal imprints are perturbed. In aborted seeds, de novo methylation is inhibited, potentially owing to incompatible paternal instructions of imbalanced dosage from M. guttatus imprints. We suggest that diverged epigenetic/regulatory landscapes between parental genomes induce epigenetic repatterning and global shifts in expression, which, in endosperm, may uniquely facilitate incompatible interactions between divergent imprinting schemes, potentially driving rapid barriers.


Assuntos
Mimulus/metabolismo , Genoma de Planta/genética , Impressão Genômica/genética , Impressão Genômica/fisiologia , Hibridização Genética , Mimulus/genética , Sementes/genética , Sementes/metabolismo
17.
Commun Biol ; 4(1): 327, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712659

RESUMO

Imperfect historical records and complex demographic histories present challenges for reconstructing the history of biological invasions. Here, we combine historical records, extensive worldwide and genome-wide sampling, and demographic analyses to investigate the global invasion of Mimulus guttatus from North America to Europe and the Southwest Pacific. By sampling 521 plants from 158 native and introduced populations genotyped at >44,000 loci, we determined that invasive M. guttatus was first likely introduced to the British Isles from the Aleutian Islands (Alaska), followed by admixture from multiple parts of the native range. We hypothesise that populations in the British Isles then served as a bridgehead for vanguard invasions worldwide. Our results emphasise the highly admixed nature of introduced M. guttatus and demonstrate the potential of introduced populations to serve as sources of secondary admixture, producing novel hybrids. Unravelling the history of biological invasions provides a starting point to understand how invasive populations adapt to novel environments.


Assuntos
Evolução Biológica , Genes de Plantas , Variação Genética , Genoma de Planta , Espécies Introduzidas , Mimulus/genética , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Mimulus/crescimento & desenvolvimento
18.
J Econ Entomol ; 114(2): 505-519, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33615362

RESUMO

Buzz-pollinated plants require visitation from vibration producing bee species to elicit full pollen release. Several important food crops are buzz-pollinated including tomato, eggplant, kiwi, and blueberry. Although more than half of all bee species can buzz pollinate, the most commonly deployed supplemental pollinator, Apis mellifera L. (Hymenoptera: Apidae; honey bees), cannot produce vibrations to remove pollen. Here, we provide a list of buzz-pollinated food crops and discuss the extent to which they rely on pollination by vibration-producing bees. We then use the most commonly cultivated of these crops, the tomato, Solanum lycopersicum L. (Solanales: Solanaceae), as a case study to investigate the effect of different pollination treatments on aspects of fruit quality. Following a systematic review of the literature, we statistically analyzed 71 experiments from 24 studies across different geopolitical regions and conducted a meta-analysis on a subset of 21 of these experiments. Our results show that both supplemental pollination by buzz-pollinating bees and open pollination by assemblages of bees, which include buzz pollinators, significantly increase tomato fruit weight compared to a no-pollination control. In contrast, auxin treatment, artificial mechanical vibrations, or supplemental pollination by non-buzz-pollinating bees (including Apis spp.), do not significantly increase fruit weight. Finally, we compare strategies for providing bee pollination in tomato cultivation around the globe and highlight how using buzz-pollinating bees might improve tomato yield, particularly in some geographic regions. We conclude that employing native, wild buzz pollinators can deliver important economic benefits with reduced environmental risks and increased advantages for both developed and emerging economies.


Assuntos
Mirtilos Azuis (Planta) , Solanum lycopersicum , Animais , Abelhas , Produtos Agrícolas , Pólen , Polinização
19.
Ann Bot ; 127(5): 655-668, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33604608

RESUMO

BACKGROUND AND AIMS: Traditionally, local adaptation has been seen as the outcome of a long evolutionary history, particularly with regard to sexual lineages. By contrast, phenotypic plasticity has been thought to be most important during the initial stages of population establishment and in asexual species. We evaluated the roles of adaptive evolution and phenotypic plasticity in the invasive success of two closely related species of invasive monkeyflowers (Mimulus) in the UK that have contrasting reproductive strategies: M. guttatus combines sexual (seeds) and asexual (clonal growth) reproduction while M. × robertsii is entirely asexual. METHODS: We compared the clonality (number of stolons), floral and vegetative phenotype, and phenotypic plasticity of native (M. guttatus) and invasive (M. guttatus and M. × robertsii) populations grown in controlled environment chambers under the environmental conditions at each latitudinal extreme of the UK. The goal was to discern the roles of temperature and photoperiod on the expression of phenotypic traits. Next, we tested the existence of local adaptation in the two species within the invasive range with a reciprocal transplant experiment at two field sites in the latitudinal extremes of the UK, and analysed which phenotypic traits underlie potential local fitness advantages in each species. KEY RESULTS: Populations of M. guttatus in the UK showed local adaptation through sexual function (fruit production), while M. × robertsii showed local adaptation via asexual function (stolon production). Phenotypic selection analyses revealed that different traits are associated with fitness in each species. Invasive and native populations of M. guttatus had similar phenotypic plasticity and clonality. M. × robertsii presents greater plasticity and clonality than native M. guttatus, but most populations have restricted clonality under the warm conditions of the south of the UK. CONCLUSIONS: This study provides experimental evidence of local adaptation in a strictly asexual invasive species with high clonality and phenotypic plasticity. This indicates that even asexual taxa can rapidly (<200 years) adapt to novel environmental conditions in which alternative strategies may not ensure the persistence of populations.


Assuntos
Mimulus , Aclimatação , Adaptação Fisiológica , Espécies Introduzidas , Fenótipo
20.
Curr Biol ; 31(2): R91-R99, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33497641

RESUMO

The majority of flowering plants relies on animal pollinators for sexual reproduction and many animal pollinators rely on floral resources. However, interests of plants and pollinators are often not the same, resulting in an asymmetric relationship that ranges from mutualistic to parasitic interactions. Our understanding of the processes that underlie this asymmetry remains fragmentary. In this Review, we bring together evidence from evolutionary biology, plant chemistry, biomechanics, sensory ecology and behaviour to illustrate that the degree of symmetry often depends on the perspective taken. We also highlight variation in (a)symmetry within and between plant and pollinator species as well as between geographic locations. Through taking different perspectives from the plant and pollinator sides we provide new ground for studies on the maintenance and evolution of animal pollination and on the (a)symmetry in plant-pollinator interactions.


Assuntos
Evolução Biológica , Comportamento Alimentar/fisiologia , Magnoliopsida/fisiologia , Polinização/fisiologia , Simbiose/fisiologia , Animais , Abelhas/fisiologia , Aves/fisiologia , Borboletas/fisiologia , Geografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...