Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 4(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30265232

RESUMO

Plasmid prediction may be of great interest when studying bacteria of medical importance such as Enterobacteriaceae as well as Staphylococcus aureus or Enterococcus. Indeed, many resistance and virulence genes are located on such replicons with major impact in terms of pathogenicity and spreading capacities. Beyond strain outbreak, plasmid outbreaks have been reported in particular for some extended-spectrum beta-lactamase- or carbapenemase-producing Enterobacteriaceae. Several tools are now available to explore the 'plasmidome' from whole-genome sequences with various approaches, but none of them are able to combine high sensitivity and specificity. With this in mind, we developed PlaScope, a targeted approach to recover plasmidic sequences in genome assemblies at the species or genus level. Based on Centrifuge, a metagenomic classifier, and a custom database containing complete sequences of chromosomes and plasmids from various curated databases, PlaScope classifies contigs from an assembly according to their predicted location. Compared to other plasmid classifiers, PlasFlow and cBar, it achieves better recall (0.87), specificity (0.99), precision (0.96) and accuracy (0.98) on a dataset of 70 genomes of Escherichia coli containing plasmids. In a second part, we identified 20 of the 21 chromosomal integrations of the extended-spectrum beta-lactamase coding gene in a clinical dataset of E. coli strains. In addition, we predicted virulence gene and operon locations in agreement with the literature. We also built a database for Klebsiella and correctly assigned the location for the majority of resistance genes from a collection of 12 Klebsiella pneumoniae strains. Similar approaches could also be developed for other well-characterized bacteria.


Assuntos
Genoma Bacteriano , Plasmídeos/genética , Software , Cromossomos Bacterianos , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Klebsiella pneumoniae/genética , Óperon , Fatores de Virulência/genética , Sequenciamento Completo do Genoma , Fluxo de Trabalho
2.
mSphere ; 3(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29404421

RESUMO

More than a century ago, Theodor Escherich isolated the bacterium that was to become Escherichia coli, one of the most studied organisms. Not long after, the strain began an odyssey and landed in many laboratories across the world. As laboratory culture conditions could be responsible for major changes in bacterial strains, we conducted a genome analysis of isolates of this emblematic strain from different culture collections (England, France, the United States, Germany). Strikingly, many discrepancies between the isolates were observed, as revealed by multilocus sequence typing (MLST), the presence of virulence-associated genes, core genome MLST, and single nucleotide polymorphism/indel analyses. These differences are correlated with the phylogeographic history of the strain and were due to an unprecedented number of mutations in coding DNA repair functions such as mismatch repair (MutL) and oxidized guanine nucleotide pool cleaning (MutT), conferring a specific mutational spectrum and leading to a mutator phenotype. The mutator phenotype was probably acquired during subculturing and corresponded to second-order selection. Furthermore, all of the isolates exhibited hypersusceptibility to antibiotics due to mutations in efflux pump- and porin-encoding genes, as well as a specific mutation in the sigma factor-encoding gene rpoS. These defects reflect a self-preservation and nutritional competence tradeoff allowing survival under the starvation conditions imposed by storage. From a clinical point of view, dealing with such mutator strains can lead microbiologists to draw false conclusions about isolate relatedness and may impact therapeutic effectiveness. IMPORTANCE Mutator phenotypes have been described in laboratory-evolved bacteria, as well as in natural isolates. Several genes can be impacted, each of them being associated with a typical mutational spectrum. By studying one of the oldest strains available, the ancestral Escherich strain, we were able to identify its mutator status leading to tremendous genetic diversity among the isolates from various collections and allowing us to reconstruct the phylogeographic history of the strain. This mutator phenotype was probably acquired during the storage of the strain, promoting adaptation to a specific environment. Other mutations in rpoS and efflux pump- and porin-encoding genes highlight the acclimatization of the strain through self-preservation and nutritional competence regulation. This strain history can be viewed as unintentional experimental evolution in culture collections all over the word since 1885, mimicking the long-term experimental evolution of E. coli of Lenski et al. (O. Tenaillon, J. E. Barrick, N. Ribeck, D. E. Deatherage, J. L. Blanchard, A. Dasgupta, G. C. Wu, S. Wielgoss, S. Cruveiller, C. Médigue, D. Schneider, and R. E. Lenski, Nature 536:165-170, 2016, https://doi.org/10.1038/nature18959) that shares numerous molecular features.

3.
Database (Oxford) ; 2009: bap021, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20157493

RESUMO

The initial outcome of genome sequencing is the creation of long text strings written in a four letter alphabet. The role of in silico sequence analysis is to assist biologists in the act of associating biological knowledge with these sequences, allowing investigators to make inferences and predictions that can be tested experimentally. A wide variety of software is available to the scientific community, and can be used to identify genomic objects, before predicting their biological functions. However, only a limited number of biologically interesting features can be revealed from an isolated sequence. Comparative genomics tools, on the other hand, by bringing together the information contained in numerous genomes simultaneously, allow annotators to make inferences based on the idea that evolution and natural selection are central to the definition of all biological processes. We have developed the MicroScope platform in order to offer a web-based framework for the systematic and efficient revision of microbial genome annotation and comparative analysis (http://www.genoscope.cns.fr/agc/microscope). Starting with the description of the flow chart of the annotation processes implemented in the MicroScope pipeline, and the development of traditional and novel microbial annotation and comparative analysis tools, this article emphasizes the essential role of expert annotation as a complement of automatic annotation. Several examples illustrate the use of implemented tools for the review and curation of annotations of both new and publicly available microbial genomes within MicroScope's rich integrated genome framework. The platform is used as a viewer in order to browse updated annotation information of available microbial genomes (more than 440 organisms to date), and in the context of new annotation projects (117 bacterial genomes). The human expertise gathered in the MicroScope database (about 280,000 independent annotations) contributes to improve the quality of microbial genome annotation, especially for genomes initially analyzed by automatic procedures alone.Database URLs: http://www.genoscope.cns.fr/agc/mage and http://www.genoscope.cns.fr/agc/microcyc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...