Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177036

RESUMO

Over the past years, molybdenum disulfide (MoS2) has been the most extensively studied two-dimensional (2D) semiconductormaterial. With unique electrical and optical properties, 2DMoS2 is considered to be a promising candidate for future nanoscale electronic and optoelectronic devices. However, charge trapping leads to a persistent photoconductance (PPC), hindering its use for optoelectronic applications. To overcome these drawbacks and improve the optoelectronic performance, organic semiconductors (OSCs) are selected to passivate surface defects, tune the optical characteristics, and modify the doping polarity of 2D MoS2. Here, we demonstrate a fast photoresponse in multilayer (ML) MoS2 by addressing a heterojunction interface with vanadylphthalocyanine (VOPc) molecules. The MoS2/VOPc van der Waals interaction that has been established encourages the PPC effect in MoS2 by rapidly segregating photo-generated holes, which move away from the traps of MoS2 toward the VOPc molecules. The MoS2/VOPc phototransistor exhibits a fast photo response of less than 15 ms for decay and rise, which is enhanced by 3ordersof magnitude in comparison to that of a pristine MoS2-based phototransistor (seconds to tens of seconds). This work offers a means to realize high-performance transition metal dichalcogenide (TMD)-based photodetection with a fast response speed.

2.
Chem Commun (Camb) ; 55(74): 11025-11028, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31453586

RESUMO

Porphyrin-based porous organic frameworks are an important group of materials gaining interest due to their structural diversity and distinct opto-electronic properties. However, these materials are seldom explored for nonlinear optical (NLO) applications. In this work, we investigate a thiazolo[5,4-d]thiazole-bridged porous, porphyrin framework (Por-TzTz-POF) with promising NLO properties. The planar TzTz moiety coupled with integrated porphyrin units enables efficient π-conjugation and charge distribution in the Por-TzTz-POF resulting in a high nonlinear absorption coefficient (ß = 1100 cm GW-1) with figure of merit (FoM) σ1/σ0 = 5571, in contrast to analogous molecules and material counterparts e.g. metal-organic frameworks (MOFs; ß = ∼0.3-0.5 cm GW-1), molecular porphyrins (ß = ∼100-400 cm GW-1), graphene (ß = 900 cm GW-1), and covalent organic frameworks (Por-COF-HH; ß = 1040 cm GW-1 and FoM = 3534).

3.
Angew Chem Int Ed Engl ; 58(21): 6896-6900, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30864202

RESUMO

Covalent organic frameworks (COFs) have garnered immense scientific interest among porous materials because of their structural tunability and diverse properties. However, the response of such materials toward laser-induced nonlinear optical (NLO) applications is hardly understood and demands prompt attention. Three novel regioregular porphyrin (Por)-based porous COFs-Por-COF-HH and its dual metalated congeners Por-COF-ZnCu and Por-COF-ZnNi-have been prepared and present excellent NLO properties. Notably, intensity-dependent NLO switching behavior was observed for these Por-COFs, which is highly desirable for optical switching and optical limiting devices. Moreover, the efficient π-conjugation and charge-transfer transition in ZnCu-Por-COF enabled a high nonlinear absorption coefficient (ß=4470 cm/GW) and figure of merit (FOM=σ1 /σo , 3565) value compared to other state-of-the-art materials, including molecular porphyrins (ß≈100-400 cm/GW), metal-organic frameworks (MOFs; ß≈0.3-0.5 cm/GW), and graphene (ß=900 cm/GW).

4.
Nano Lett ; 18(11): 7261-7267, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30339757

RESUMO

We report the mode interactions and resonant hybridization in nanomembrane-formed concentric dual ring cavities supporting whispering gallery mode resonances. Utilizing a rolled-up nanomembrane with subwavelength thickness as an interlayer, dual concentric microring cavities are formed by coating high-index nanomembranes on the inner and outer surfaces of the rolled-up dielectric nanomembrane. In such a hybrid cavity system, the conventional fundamental mode resonating along a single ring orbit splits into symmetric and antisymmetric modes confined by concentric dual ring orbits. Detuning of the coupled supermodes is realized by spatially resolved measurements along the cavity axial direction. A spectral anticrossing feature is observed as a clear evidence of strong coupling. Upon strong coupling, the resonant orbits of symmetric and antisymmetric modes cross over each other in the form of superwaves oscillating between the concentric rings with opposite phase. Notably, the present system provides high flexibilities in controlling the coupling strength by varying the thickness of the spacer layer and thus enables switching between strong and weak coupling regimes. Our work offers a compact and robust scheme using curved nanomembranes to realize novel cavity mode interactions for both fundamental and applied studies.

5.
Opt Express ; 20(19): 21214-22, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037245

RESUMO

Rare earth-activated 1-D photonic crystals were fabricated by RF-sputtering technique. The cavity is constituted by an Er3+-doped SiO2 active layer inserted between two Bragg reflectors consisting of ten pairs of SiO2/TiO2 layers. Scanning electron microscopy is employed to put in evidence the quality of the sample, the homogeneities of the layers thickness and the good adhesion among them. Near infrared transmittance and variable angle reflectance spectra confirm the presence of a stop band from 1500 nm to 2000 nm with a cavity resonance centered at 1749 nm at 0° and a quality factor of 890. The influence of the cavity on the 4I13/2 -->4I15/2 emission band of Er3+ ion is also demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...