Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 91(3): 035001, 2003 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12906422

RESUMO

Particle transport in magnetized plasmas is investigated with a fluid model of drift wave turbulence. An analytical calculation shows that magnetic field curvature and thermodiffusion drive an anomalous pinch. The curvature driven pinch velocity is consistent with the prediction of turbulence equipartition theory. The thermodiffusion flux is found to be directed inward for a small ratio of electron to ion pressure gradient, and it reverses its sign when increasing this ratio. Numerical simulations confirm that a turbulent particle pinch exists. It is mainly driven by curvature for equal ion and electron heat sources. The sign and relative weights of the curvature and thermodiffusion pinches are consistent with the analytical calculation.

2.
Phys Rev Lett ; 85(3): 574-7, 2000 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-10991343

RESUMO

Lower hybrid current drive (LHCD) with modest powers ( approximately 10% of the total power input) has been used for the first time to completely stabilize performance limiting neoclassical tearing modes in many COMPASS-D tokamak discharges. The stabilizing effect in these experiments is consistent with a reduction in the free energy available in the current profile to drive tearing modes (i.e., the stability index, delta(')) resulting from favorable current gradients (from the LHCD driven current) around the rational surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...