Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 157(20): 204202, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36456239

RESUMO

We have previously demonstrated that in the context of two-dimensional (2D) coherent electronic spectroscopy measured by phase modulation and phase-sensitive detection, an incoherent nonlinear response due to pairs of photoexcitations produced via linear excitation pathways contributes to the measured signal as an unexpected background [Grégoire et al., J. Chem. Phys. 147, 114201 (2017)]. Here, we simulate the effect of such incoherent population mixing in the photocurrent signal collected from a GaAs solar cell by acting externally on the transimpedance amplifier circuit used for phase-sensitive detection, and we identify an effective strategy to recognize the presence of incoherent population mixing in 2D data. While we find that incoherent mixing is reflected by the crosstalk between the linear amplitudes at the two time-delay variables in the four-pulse excitation sequence, we do not observe any strict phase correlations between the coherent and incoherent contributions, as expected from modeling of a simple system.

2.
Sci Adv ; 7(50): eabi5197, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890231

RESUMO

Frenkel excitons are unequivocally responsible for the optical properties of organic semiconductors and are predicted to form bound exciton pairs (biexcitons). These are key intermediates, ubiquitous in many photophysical processes such as the exciton bimolecular annihilation dynamics in such systems. Because of their spectral ambiguity, there has been, to date, only scant direct evidence of bound biexcitons. By using nonlinear coherent spectroscopy, we identify here bound biexcitons in a model polymeric semiconductor. We find, unexpectedly, that excitons with interchain vibronic dispersion reveal intrachain biexciton correlations and vice versa. Moreover, using a Frenkel exciton model, we relate the biexciton binding energy to molecular parameters quantified by quantum chemistry, including the magnitude and sign of the exciton-exciton interaction the intersite hopping energies. Therefore, our work promises general insights into the many-body electronic structure in polymeric semiconductors and beyond, e.g., other excitonic systems such as organic semiconductor crystals, molecular aggregates, photosynthetic light-harvesting complexes, or DNA.

3.
Sci Adv ; 5(5): eaaw5558, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31172030

RESUMO

Hybrid organic-inorganic halide perovskites have shown remarkable optoelectronic properties, exhibiting an impressive tolerance to defects believed to originate from correlated motion of charge carriers and the polar lattice forming large polarons. Few experimental techniques are capable of directly probing these correlations, requiring simultaneous sub-millielectron volt energy and femtosecond temporal resolution after absorption of a photon. Here, we use time-resolved multi-THz spectroscopy, sensitive to the internal excitations of the polaron, to temporally and energetically resolve the coherent coupling of charges to longitudinal optical phonons in single-crystal CH3NH3PbI3 (MAPI). We observe room temperature intraband quantum beats arising from the coherent displacement of charge from the coupled phonon cloud. Our measurements provide strong evidence for the existence of polarons in MAPI at room temperature, suggesting that electron/hole-phonon coupling is a defining aspect of the hybrid metal-halide perovskites contributing to the protection from scattering and enhanced carrier lifetimes that define their usefulness in devices.

4.
Nat Mater ; 18(4): 406, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30765889

RESUMO

In the version of this Article originally published, the units of the Fig. 3a x axis were incorrectly given as meV. They should have been eV. This has now been corrected in all versions of the Article.

5.
Nat Mater ; 18(4): 349-356, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30643234

RESUMO

Hybrid organic-inorganic semiconductors feature complex lattice dynamics due to the ionic character of the crystal and the softness arising from non-covalent bonds between molecular moieties and the inorganic network. Here we establish that such dynamic structural complexity in a prototypical two-dimensional lead iodide perovskite gives rise to the coexistence of diverse excitonic resonances, each with a distinct degree of polaronic character. By means of high-resolution resonant impulsive stimulated Raman spectroscopy, we identify vibrational wavepacket dynamics that evolve along different configurational coordinates for distinct excitons and photocarriers. Employing density functional theory calculations, we assign the observed coherent vibrational modes to various low-frequency (≲50 cm-1) optical phonons involving motion in the lead iodide layers. We thus conclude that different excitons induce specific lattice reorganizations, which are signatures of polaronic binding. This insight into the energetic/configurational landscape involving globally neutral primary photoexcitations may be relevant to a broader class of emerging hybrid semiconductor materials.

6.
Proc Natl Acad Sci U S A ; 116(2): 450-455, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30587594

RESUMO

We combine ultrafast electron diffraction and time-resolved terahertz spectroscopy measurements to link structure and electronic transport properties during the photoinduced insulator-metal transitions in vanadium dioxide. We determine the structure of the metastable monoclinic metal phase, which exhibits antiferroelectric charge order arising from a thermally activated, orbital-selective phase transition in the electron system. The relative contribution of the photoinduced monoclinic and rutile metals to the time-dependent and pump-fluence-dependent multiphase character of the film is established, as is the respective impact of these two distinct phase transitions on the observed changes in terahertz conductivity. Our results represent an important example of how light can control the properties of strongly correlated materials and demonstrate that multimodal experiments are essential when seeking a detailed connection between ultrafast changes in optical-electronic properties and lattice structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...