Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2308125, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610109

RESUMO

The synthesis of lanthanide-based organometallic sandwich compounds is very appealing regarding their potential for single-molecule magnetism. Here, it is exploited by on-surface synthesis to design unprecedented lanthanide-directed organometallic sandwich complexes on Au(111). The reported compounds consist of Dy or Er atoms sandwiched between partially deprotonated hexahydroxybenzene molecules, thus introducing a distinct family of homoleptic organometallic sandwiches based on six-membered ring ligands. Their structural, electronic, and magnetic properties are investigated by scanning tunneling microscopy and spectroscopy, X-ray absorption spectroscopy, X-ray linear and circular magnetic dichroism, and X-ray photoelectron spectroscopy, complemented by density functional theory-based calculations. Both lanthanide complexes self-assemble in close-packed islands featuring a hexagonal lattice. It is unveiled that, despite exhibiting analogous self-assembly, the erbium-based species is magnetically isotropic, whereas the dysprosium-based compound features an in-plane magnetization.

2.
Chem Sci ; 15(6): 2141-2157, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332818

RESUMO

Nd-based nitride clusterfullerenes NdM2N@C80 with rare-earth metals of different sizes (M = Sc, Y, Lu) were synthesized to elucidate the influence of the cluster composition, shape and internal strain on the structural and magnetic properties. Single crystal X-ray diffraction revealed a very short Nd-N bond length in NdSc2N@C80. For Lu and Y analogs, the further shortening of the Nd-N bond and pyramidalization of the NdM2N cluster are predicted by DFT calculations as a result of the increased cluster size and a strain caused by the limited size of the fullerene cage. The short distance between Nd and nitride ions leads to a very large ligand-field splitting of Nd3+ of 1100-1200 cm-1, while the variation of the NdM2N cluster composition and concomitant internal strain results in the noticeable modulation of the splitting, which could be directly assessed from the well-resolved fine structure in the Nd-based photoluminescence spectra of NdM2N@C80 clusterfullerenes. Photoluminescence measurements also revealed an unprecedentedly strong nephelauxetic effect, pointing to a high degree of covalency. The latter appears detrimental to the magnetic axiality despite the strong ligand field. As a result, the ground magnetic state has considerable transversal components of the pseudospin g-tensor, and the slow magnetic relaxation of NdSc2N@C80 could be observed by AC magnetometry only in the presence of a magnetic field. A combination of the well-resolved magneto-optical states and slow relaxation of magnetization suggests that Nd clusterfullerenes can be useful building blocks for magneto-photonic quantum technologies.

3.
Phys Rev Lett ; 132(4): 046401, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335370

RESUMO

CeRh_{2}As_{2} is a new multiphase superconductor with strong suggestions for an additional itinerant multipolar ordered phase. The modeling of the low-temperature properties of this heavy-fermion compound requires a quartet Ce^{3+} crystal-field ground state. Here, we provide the evidence for the formation of such a quartet state using x-ray spectroscopy. Core-level photoelectron and x-ray absorption spectroscopy confirm the presence of Kondo hybridization in CeRh_{2}As_{2}. The temperature dependence of the linear dichroism unambiguously reveals the impact of Kondo physics for coupling the Kramer's doublets into an effective quasiquartet. Nonresonant inelastic x-ray scattering data find that the |Γ_{7}^{-}⟩ state with its lobes along the 110 direction of the tetragonal structure (xy orientation) contributes most to the multiorbital ground state of CeRh_{2}As_{2}.

4.
Nat Commun ; 15(1): 1858, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424075

RESUMO

Ferromagnetism is the collective alignment of atomic spins that retain a net magnetic moment below the Curie temperature, even in the absence of external magnetic fields. Reducing this fundamental property into strictly two-dimensions was proposed in metal-organic coordination networks, but thus far has eluded experimental realization. In this work, we demonstrate that extended, cooperative ferromagnetism is feasible in an atomically thin two-dimensional metal-organic coordination network, despite only ≈ 5% of the monolayer being composed of Fe atoms. The resulting ferromagnetic state exhibits an out-of-plane easy-axis square-like hysteresis loop with large coercive fields over 2 Tesla, significant magnetic anisotropy, and persists up to TC ≈ 35 K. These properties are driven by exchange interactions mainly mediated by the molecular linkers. Our findings resolve a two decade search for ferromagnetism in two-dimensional metal-organic coordination networks.

5.
Small ; : e2309555, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38155502

RESUMO

Antiferromagnetic spintronics is a rapidly emerging field with the potential to revolutionize the way information is stored and processed. One of the key challenges in this field is the development of novel 2D antiferromagnetic materials. In this paper, the first on-surface synthesis of a Co-directed metal-organic network is reported in which the Co atoms are strongly antiferromagnetically coupled, while featuring a perpendicular magnetic anisotropy. This material is a promising candidate for future antiferromagnetic spintronic devices, as it combines the advantages of 2D and metal-organic chemistry with strong antiferromagnetic order and perpendicular magnetic anisotropy.

6.
Nano Lett ; 23(20): 9579-9586, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37818868

RESUMO

Insertion of metal layers between layered transition-metal dichalcogenides (TMDs) enables the design of new pseudo-2D nanomaterials. The general premise is that various metal atoms may adopt energetically favorable intercalation sites between two TMD sheets. These covalently bound metals arrange in metastable configurations and thus enable the controlled synthesis of nanomaterials in a bottom-up approach. Here, this method is demonstrated by the insertion of Cr or Mn between VSe2 layers. Vacuum-deposited transition metals diffuse between VSe2 layers with increasing concentration, arranging in ordered phases. The Cr3+ or Mn2+ ions are in octahedral coordination and thus in a high-spin state. Measured and computed magnetic moments are high for dilute Cr atoms, but with increasing Cr concentration the average magnetic moment decreases, suggesting antiferromagnetic ordering between Cr ions. The many possible combinations of transition metals with TMDs form a library for exploring quantum phenomena in these nanomaterials.

7.
Adv Mater ; 35(35): e2302966, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37436805

RESUMO

Spin-polarization is known as a promising way to promote the anodic oxygen evolution reaction (OER), since the intermediates and products endow spin-dependent behaviors, yet it is rarely reported for ferromagnetic catalysts toward acidic OER practically used in industry. Herein, the first spin-polarization-mediated strategy is reported to create a net ferromagnetic moment in antiferromagnetic RuO2 via dilute manganese (Mn2+ ) (S = 5/2) doping for enhancing OER activity in acidic electrolyte. Element-selective X-ray magnetic circular dichroism reveals the ferromagnetic coupling between Mn and Ru ions, fulfilling the Goodenough-Kanamori rule. The ferromagnetism behavior at room temperature can be well interpreted by first principles calculations as the interaction between the Mn2+ impurity and Ru ions. Indeed, Mn-RuO2 nanoflakes exhibit a strongly magnetic field enhanced OER activity, with the lowest overpotential of 143 mV at 10 mA cmgeo -2 and negligible activity decay in 480 h stability (vs 200 mV/195 h without magnetic field) as known for magnetic effects in the literature. The intrinsic turnover frequency is also improved to reach 5.5 s-1 at 1.45 VRHE . This work highlights an important avenue of spin-engineering strategy for designing efficient acidic oxygen evolution catalysts.

8.
Sci Rep ; 13(1): 11711, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474533

RESUMO

In multilayers of magnetic thin films with perpendicular anisotropy, domain walls can take on hybrid configurations in the vertical direction which minimize the domain wall energy, with Néel walls in the top or bottom layers and Bloch walls in some central layers. These types of textures are theoretically predicted, but their observation has remained challenging until recently, with only a few techniques capable of realizing a three dimensional characterization of their magnetization distribution. Here we perform a field dependent X-ray resonant magnetic scattering measurements on magnetic multilayers exploiting circular dichroism contrast to investigate such structures. Using a combination of micromagnetic and X-ray resonant magnetic scattering simulations along with our experimental results, we characterize the three-dimensional magnetic texture of domain walls, notably the thickness resolved characterization of the size and position of the Bloch part in hybrid walls. We also take a step in advancing the resonant scattering methodology by using measurements performed off the multilayer Bragg angle in order to calibrate the effective absorption of the X-rays, and permitting a quantitative evaluation of the out of plane (z) structure of our samples. Beyond hybrid domain walls, this approach can be used to characterize other periodic chiral structures such as skyrmions, antiskyrmions or even magnetic bobbers or hopfions, in both static and dynamic experiments.

9.
Small ; 19(39): e2302387, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37231567

RESUMO

Van der Waals (vdW) heterostructures combining layered ferromagnets and other 2D crystals are promising building blocks for the realization of ultracompact devices with integrated magnetic, electronic, and optical functionalities. Their implementation in various technologies depends strongly on the development of a bottom-up scalable synthesis approach allowing for realizing highly uniform heterostructures with well-defined interfaces between different 2D-layered materials. It is also required that each material component of the heterostructure remains functional, which ideally includes ferromagnetic order above room temperature for 2D ferromagnets. Here, it is demonstrated that the large-area growth of Fe5- x GeTe2 /graphene heterostructures is achieved by vdW epitaxy of Fe5- x GeTe2 on epitaxial graphene. Structural characterization confirms the realization of a continuous vdW heterostructure film with a sharp interface between Fe5- x GeTe2 and graphene. Magnetic and transport studies reveal that the ferromagnetic order persists well above 300 K with a perpendicular magnetic anisotropy. In addition, epitaxial graphene on SiC(0001) continues to exhibit a high electronic quality. These results represent an important advance beyond nonscalable flake exfoliation and stacking methods, thus marking a crucial step toward the implementation of ferromagnetic 2D materials in practical applications.

10.
Adv Mater ; 35(38): e2301441, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37036386

RESUMO

Due to the fundamental and technological implications in driving the appearance of non-trivial, exotic topological spin textures and emerging symmetry-broken phases, flat electronic bands in 2D materials, including graphene, are nowadays a relevant topic in the field of spintronics. Here, via europium doping, single spin-polarized bands are generated in monolayer graphene supported by the Co(0001) surface. The doping is controlled by Eu positioning, allowing for the formation of a K ¯ $\bar{\mathrm{K}}$ -valley localized single spin-polarized low-dispersive parabolic band close to the Fermi energy when Eu is on top, and of a π* flat band with single spin character when Eu is intercalated underneath graphene. In the latter case, Eu also induces a bandgap opening at the Dirac point while the Eu 4f states act as a spin filter, splitting the π band into two spin-polarized branches. The generation of flat bands with single spin character, as revealed by the spin- and angle-resolved photoemission spectroscopy (ARPES) experiments, complemented by density functional theory (DFT) calculations, opens up new pathways toward the realization of spintronic devices exploiting such novel exotic electronic and magnetic states.

11.
Nanoscale ; 15(16): 7267-7271, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022670

RESUMO

The coordination of lanthanides atoms in two-dimensional surface-confined metal-organic networks is a promising path to achieve an ordered array of single atom magnets. These networks are highly versatile with plenty of combinations of molecular linkers and metallic atoms. Notably, with an appropriate choice of molecules and lanthanide atoms it should be feasible to tailor the orientation and intensity of the magnetic anisotropy. However, up to now only tilted and almost in-plane easy axis of magnetizations were reported in lanthanide-based architectures. Here we introduce an Er-directed two-dimensional metallosupramolecular network on Cu(111) featuring strong out-of-plane magnetic anisotropy. Our results will contribute to pave avenues for the use of lanthanides in potential applications in nanomagnetism and spintronics.

12.
Adv Sci (Weinh) ; 10(10): e2203239, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36802132

RESUMO

The recent realizations of the quantum anomalous Hall effect (QAHE) in MnBi2 Te4 and MnBi4 Te7 benchmark the (MnBi2 Te4 )(Bi2 Te3 )n family as a promising hotbed for further QAHE improvements. The family owes its potential to its ferromagnetically (FM) ordered MnBi2 Te4 septuple layers (SLs). However, the QAHE realization is complicated in MnBi2 Te4 and MnBi4 Te7 due to the substantial antiferromagnetic (AFM) coupling between the SLs. An FM state, advantageous for the QAHE, can be stabilized by interlacing the SLs with an increasing number n of Bi2 Te3 quintuple layers (QLs). However, the mechanisms driving the FM state and the number of necessary QLs are not understood, and the surface magnetism remains obscure. Here, robust FM properties in MnBi6 Te10 (n = 2) with Tc ≈ 12 K are demonstrated and their origin is established in the Mn/Bi intermixing phenomenon by a combined experimental and theoretical study. The measurements reveal a magnetically intact surface with a large magnetic moment, and with FM properties similar to the bulk. This investigation thus consolidates the MnBi6 Te10 system as perspective for the QAHE at elevated temperatures.

13.
Adv Mater ; 35(17): e2209759, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36795948

RESUMO

Exchange bias (EB) is highly desirable for widespread technologies. Generally, conventional exchange-bias heterojunctions require excessively large cooling fields for sufficient bias fields, which are generated by pinned spins at the interface of ferromagnetic and antiferromagnetic layers. It is crucial for applicability to obtain considerable exchange-bias fields with minimum cooling fields. Here, an exchange-bias-like effect is reported in a double perovskite, Y2 NiIrO6 , which shows long-range ferrimagnetic ordering below 192 K. It displays a giant bias-like field of 1.1 T with a cooling field of only 15 Oe at 5 K. This robust phenomenon appears below 170 K. This fascinating bias-like effect is the secondary effect of the vertical shifts of the magnetic loops, which is attributed to the pinned magnetic domains due to the combination of strong spin-orbit coupling on Ir, and antiferromagnetically coupled Ni- and Ir-sublattices. The pinned moments in Y2 NiIrO6 are present throughout the full volume, not just at the interface as in conventional bilayer systems.

14.
Adv Mater ; 35(3): e2207246, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271718

RESUMO

The perovskite SrRuO3 (SRO) is a strongly correlated oxide whose physical and structural properties are strongly intertwined. Notably, SRO is an itinerant ferromagnet that exhibits a large anomalous Hall effect (AHE) whose sign can be readily modified. Here, a hydrogen spillover method is used to tailor the properties of SRO thin films via hydrogen incorporation. It is found that the magnetization and Curie temperature of the films are strongly reduced and, at the same time, the structure evolves from an orthorhombic to a tetragonal phase as the hydrogen content is increased up to ≈0.9 H per SRO formula unit. The structural phase transition is shown, via in situ crystal truncation rod measurements, to be related to tilting of the RuO6 octahedral units. The significant changes observed in magnetization are shown, via density functional theory (DFT), to be a consequence of shifts in the Fermi level. The reported findings provide new insights into the physical properties of SRO via tailoring its lattice symmetry and emergent physical phenomena via the hydrogen spillover technique.

15.
J Am Chem Soc ; 144(35): 16034-16041, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36007260

RESUMO

The design of antiferromagnetic nanomaterials preserving large orbital magnetic moments is important to protect their functionalities against magnetic perturbations. Here, we exploit an archetype H6HOTP species for conductive metal-organic frameworks to design a Co-HOTP one-atom-thick metal-organic architecture on a Au(111) surface. Our multidisciplinary scanning probe microscopy, X-ray absorption spectroscopy, X-ray linear dichroism, and X-ray magnetic circular dichroism study, combined with density functional theory simulations, reveals the formation of a unique network design based on threefold Co+2 coordination with deprotonated ligands, which displays a large orbital magnetic moment with an orbital to effective spin moment ratio of 0.8, an in-plane easy axis of magnetization, and large magnetic anisotropy. Our simulations suggest an antiferromagnetic ground state, which is compatible with the experimental findings. Such a Co-HOTP metal-organic network exemplifies how on-surface chemistry can enable the design of field-robust antiferromagnetic materials.


Assuntos
Cobalto , Magnetismo , Anisotropia , Cobalto/química , Ligantes , Metais , Raios X
17.
Small ; 18(22): e2107073, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35393751

RESUMO

The design of lanthanide multinuclear networks is an emerging field of research due to the potential of such materials for nanomagnetism, spintronics, and quantum information. Therefore, controlling their electronic and magnetic properties is of paramount importance to tailor the envisioned functionalities. In this work, a multidisciplinary study is presented combining scanning tunneling microscopy, scanning tunneling spectroscopy, X-ray absorption spectroscopy, X-ray linear dichroism, X-ray magnetic circular dichroism, density functional theory, and multiplet calculations, about the supramolecular assembly, electronic and magnetic properties of periodic dinuclear 2D networks based on lanthanide-pyridyl interactions on Au(111). Er- and Dy-directed assemblies feature identical structural architectures stabilized by metal-organic coordination. Notably, despite exhibiting the same +3 oxidation state, there is a shift of the energy level alignment of the unoccupied molecular orbitals between Er- and Dy-directed networks. In addition, there is a reorientation of the easy axis of magnetization and an increment of the magnetic anisotropy when the metallic center is changed from Er to Dy. Thus, the results show that it is feasible to tune the energy level alignment and magnetic anisotropy of a lanthanide-based metal-organic architecture by metal exchange, while preserving the network design.

18.
ACS Nano ; 16(4): 6206-6214, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377608

RESUMO

Oxygen defects and their atomic arrangements play a significant role in the physical properties of many transition metal oxides. The exemplary perovskite SrCoO3-δ (P-SCO) is metallic and ferromagnetic. However, its daughter phase, the brownmillerite SrCoO2.5 (BM-SCO), is insulating and an antiferromagnet. Moreover, BM-SCO exhibits oxygen vacancy channels (OVCs) that in thin films can be oriented either horizontally (H-SCO) or vertically (V-SCO) to the film's surface. To date, the orientation of these OVCs has been manipulated by control of the thin film deposition parameters or by using a substrate-induced strain. Here, we present a method to electrically control the OVC ordering in thin layers via ionic liquid gating (ILG). We show that H-SCO (antiferromagnetic insulator, AFI) can be converted to P-SCO (ferromagnetic metal, FM) and subsequently to V-SCO (AFI) by the insertion and subtraction of oxygen throughout thick films via ILG. Moreover, these processes are independent of substrate-induced strain which favors formation of H-SCO in the as-deposited film. The electric-field control of the OVC channels is a path toward the creation of oxitronic devices.

19.
ACS Appl Mater Interfaces ; 14(10): 12766-12776, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254812

RESUMO

Nowadays, a wide number of applications based on magnetic materials rely on the properties arising at the interface between different layers in complex heterostructures engineered at the nanoscale. In ferromagnetic/heavy metal multilayers, such as the [Co/Pt]N and [Co/Pd]N systems, the magnetic proximity effect was demonstrated to be asymmetric, thus inducing a magnetic moment on the Pt (Pd) layer that is typically higher at the top Co/Pt(Pd) interface. In this work, advanced spectroscopic and imaging techniques were combined with theoretical approaches to clarify the origin of this asymmetry both in Co/Pt trilayers and, for the first time, in multilayer systems that are more relevant for practical applications. The different magnetic moment induced at the Co/Pt interfaces was correlated to the microstructural features that are in turn affected by the growth processes that induce a different intermixing during the film deposition, thus influencing the interface magnetic profile.

20.
Science ; 374(6567): 616-620, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34709893

RESUMO

The physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting intriguing long-range magnetic order have been in the spotlight. Although an out-of-plane anisotropy has been shown to stabilize 2D magnetic order, the demonstration of a 2D magnet with in-plane rotational symmetry has remained elusive. We constructed a nearly ideal easy-plane system, a single CrCl3 monolayer on graphene/6H-SiC(0001), and observed robust ferromagnetic ordering with critical scaling characteristic of a 2D-XY system. These observations indicate the realization of a finite-size Berezinskii-Kosterlitz-Thouless phase transition in a large-area, quasi­free-standing van der Waals monolayer magnet with an XY universality class. This offers a material platform to host 2D superfluid spin transport and topological magnetic textures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...