Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nanoscale ; 13(13): 6426-6438, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33885523

RESUMO

Magneto-fluorescent nanocomposites have been recognized as an emerging class of materials displaying great potential for improved magnetic hyperthermia assisted by optical imaging. In this study, we have designed a series of hybrid composites that consist of zinc doped ZnxFe3-xO4 ferrites functionalized by polyethylene-glycol (PEG8000) and an orange-emitting platinum complex [Pt(phen)Cl2]. Experimental and theoretical studies on the optimization of their magnetically-mediated heating properties were conducted. PEG was assembled around particles' surface by two different approaches; in situ and post-PEGylation. PEGylation ensured the optimal distance between the magnetic core and Pt(ii)-complex to maintain significant luminescence in the composite. The successful inclusion of the complex to the organic matrix was confirmed by a variety of spectroscopic techniques. A theoretical model was developed, based on linear response theory, in order to examine the composites' power losses dependence on their properties. Within this model, inter-particle interactions were quantified by inserting a mean dipolar energy term in the estimation of Néel relaxation time, and consequently, the size and concentration that maximize power loss were derived (20 nm and 4 mg mL-1). Moreover, a decrease in the anisotropy of nanoparticles resulted in an increase in specific loss power values. Theoretical estimations are validated by experimental data when heating aqueous dispersions of composites in 24 kA m-1, 765 kHz AMF for various values of concentration and size. Magnetic hyperthermia results showed that the theory-predicted values of optimum concentration and size delivered the maximum-specific loss power which was found equal to 545 W g-1. By the present approach, a quantitative link between the particles' dipolar interactions and their heating properties is established, while opening new perspectives to nanotheranostic applications.

2.
Materials (Basel) ; 13(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230764

RESUMO

Water pollution by heavy metals is one of the most serious worldwide environmental issues. With a focus on copper(II) ions and copper complex removal, in the present study, ultra-small primary CoFe2O4 magnetic nanoparticles (MNPs) coated with octadecylamine (ODA) of adequate magnetization were solvothermally prepared. The surface modification of the initial MNPs was adapted via three different chemical approaches based on amine and/or carboxylate functional groups: (i) the deposition of polyethylimide (PEI), (ii) covalent binding with diethylenetriaminepentaacetic acid (DTPA), and (iii) conjugation with both PEI and DTPA, respectively. FT-IR, TGA, and DLS measurements confirmed that PEI or/and DTPA were successfully functionalized. The percentage of the free amine (-NH2) groups was also estimated. Increased magnetization values were found in case of PEI and DTPA-modified MNPs that stemmed from the adsorbed amine or oxygen ligands. Comparative UV-Vis studies for copper(II) ion removal from aqueous solutions were conducted, and the effect of time on the adsorption capacity was analyzed. The PEI-modified particles exhibited the highest adsorption capacity (164.2 mg/g) for copper(II) ions and followed the pseudo-second-order kinetics, while the polynuclear copper(II) complex Cux(DTPA)y was also able to be immobilized. The nanoadsorbents were quickly isolated from the solution by magnetic separation and regenerated easily by acidic treatment.

3.
J Colloid Interface Sci ; 511: 101-109, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992447

RESUMO

The use of magnetic nanostructures as theranostic agents is a multiplex task as physiochemical and biochemical properties including excellent magneto-responsive properties, low toxicity, colloidal stability and facile surface engineering capability are all required. Nonetheless, much progress has been made in recent years synthesis of "all-in-one" MNPs remain unambiguously challenging. Towards this direction, in this study is presented a facile incorporation of a soft magnetic phase (MnFe2O4 NPs) with a hard phase (CoFe2O4 NPs) in the presence of the biocompatible polymer sodium dodecyl sulfate (SDS), into spherical and compact bi-magnetic nanoclusters (NCs) with modulated magnetic properties that critically enhance hyperthermic efficiency and MRI contrast effect. Hydrophobic MnFe2O4 and CoFe2O4 NPs coated with oleylamine of the same size (9 nm) were used as primary building units for the formation of the bi-magnetic NCs through a microemulsion approach where a set of experiments were conducted to identify the optimal concentration of SDS (19.5 mM) for the cluster formation. Additionally, homo-magnetic NCs of MnFe2O4 NPs and CoFe2O4 NPs, respectively were synthesized for comparative studies. The presence of distinct magnetic phases within the bi-magnetic NCs resulting in synergistic behavior, where the soft phase offers moderate coercivity Hc and the hard one high magnetization Ms. Increased specific loss power (SLP) value was obtained for the bi-magnetic system (525 W/g) when compared with the homo-magnetic NCs (104 W/g for MnNCs and 223 W/g for CoNCs) under field conditions of 25 kA/m and 765 kHz. Relaxivities (r2) of the bi-magnetic NCs were also higher (81.8 mM-1 s-1) than those of the homo-magnetic NCs (47.4 mM-1 s-1 for MnNCs and 3.1 mM-1 s-1 for CoNCs), while the high r2/r1 value renders the system suitable for T2-weighted MRI imaging.

4.
ACS Appl Mater Interfaces ; 8(51): 35059-35070, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27966875

RESUMO

Adequately designed multiresponsive water-soluble graft copolymers were used to serve as a multifunctional polymeric platform for the encapsulation and transfer in aqueous media of hydrophobic magnetic nanoparticles (MNPs). The backbone of the graft copolymers was composed of hydrophilic sodium methacrylate units, hydrophobic dodecyl methacrylate units, and luminescent quinoline-based units, while either the homopolymer poly(N-isopropylacrylamide) or a poly(N,N-dimethylacrylamide-co-N-isopropylacrylamide) copolymer was used as thermosensitive pendent side chains. The polymeric platform forms micellar-type assemblies in aqueous solution, and exhibits pH-responsive luminescent properties and a lower critical solution temperature behavior in water. Depending on the design of the side chains, the cloud point temperatures were determined at 38 and 42 °C, close or slightly above body temperature (37 °C). Above the critical micelle concentration (CMC), both graft copolymers can effectively stabilize in aqueous media as magnetic colloidal superparticles (MSPs), oleylamine-coated MnFe2O4 MNPs, as well as 1:1 mixture of oleylamine-coated MnFe2O4 and CoFe2O4 MNPs. When CoFe2O4 particles were mixed with MnFeO4 in equal amounts, the specific loss power increased significantly, while an opposite trend was observed in the magnetic resonance imaging (MRI) studies, probably due to the anisotropy of cobalt. As a consequence, fine-tuning of the chemical structure of the copolymers and the composition of the MSPs can lead to materials that are able to act simultaneously as luminescent, hyperthermia, and contrast MRI agents.


Assuntos
Compostos Férricos/química , Hipertermia Induzida , Luminescência , Espectroscopia de Ressonância Magnética , Micelas , Polímeros , Temperatura
5.
Dalton Trans ; 44(12): 5396-406, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25689845

RESUMO

Manganese doped ferrite (MnxFe3-xO4) nanoparticles with x = 0.29-0.77 were prepared under solvothermal conditions in the presence solely of a polyol using the trivalent manganese and iron acetylacetonates as precursors. In this facile approach, a variety of polyols such as polyethylene glycol (PEG 8000), tetraethylene glycol (TEG), propylene glycol (PG) and a mixture of TEG and PG (1 : 1) were utilized in a triple role as a solvent, a reducing agent and a surface-functionalizing agent. The composition of the fine cubic-spinel structures was found to be related to the reductive ability of each polyol, while determination of structural characteristics plus the inversion parameter (i = 0.18-0.38) were provided by X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy at both the Fe and Mn K-edges. The saturation magnetization increased up to 80 emu g(-1) when x = 0.35 and i = 0.22. In addition, the as-prepared nanocrystals coated with PEG, PG and PG&TEG showed excellent colloidal stability in water, while the TEG-coated particles were not water dispersible and converted to hydrophilic when were extra PEGylated. Measurements of the (1)H NMR relaxation in water were carried out and the nanoprobes were evaluated as potential contrast agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...