Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolism ; 149: 155695, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802200

RESUMO

BACKGROUND: Gestational diabetes (GDM) is a distinctive form of diabetes that first presents in pregnancy. While most women return to normoglycemia after delivery, they are nearly ten times more likely to develop type 2 diabetes than women with uncomplicated pregnancies. Current prevention strategies remain limited due to our incomplete understanding of the early underpinnings of progression. AIM: To comprehensively characterize the postpartum profiles of women shortly after a GDM pregnancy and identify key mechanisms responsible for the progression to overt type 2 diabetes using multi-dimensional approaches. METHODS: We conducted a nested case-control study of 200 women from the Study of Women, Infant Feeding and Type 2 Diabetes After GDM Pregnancy (SWIFT) to examine biochemical, proteomic, metabolomic, and lipidomic profiles at 6-9 weeks postpartum (baseline) after a GDM pregnancy. At baseline and annually up to two years, SWIFT administered research 2-hour 75-gram oral glucose tolerance tests. Women who developed incident type 2 diabetes within four years of delivery (incident case group, n = 100) were pair-matched by age, race, and pre-pregnancy body mass index to those who remained free of diabetes for at least 8 years (control group, n = 100). Correlation analyses were used to assess and integrate relationships across profiling platforms. RESULTS: At baseline, all 200 women were free of diabetes. The case group was more likely to present with dysglycemia (e.g., impaired fasting glucose levels, glucose tolerance, or both). We also detected differences between groups across all omic platforms. Notably, protein profiles revealed an underlying inflammatory response with perturbations in protease inhibitors, coagulation components, extracellular matrix components, and lipoproteins, whereas metabolite and lipid profiles implicated disturbances in amino acids and triglycerides at individual and class levels with future progression. We identified significant correlations between profile features and fasting plasma insulin levels, but not with fasting glucose levels. Additionally, specific cross-omic relationships, particularly among proteins and lipids, were accentuated or activated in the case group but not the control group. CONCLUSIONS: Overall, we applied orthogonal, complementary profiling techniques to uncover an inflammatory response linked to elevated triglyceride levels shortly after a GDM pregnancy, which is more pronounced in women who progress to overt diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Lactente , Gravidez , Feminino , Humanos , Criança , Estudos de Casos e Controles , Proteômica , Glucose
2.
Mol Cell Proteomics ; 20: 100101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033948

RESUMO

Normothermic ex-vivo kidney perfusion (NEVKP) results in significantly improved graft function in porcine auto-transplant models of donation after circulatory death injury compared with static cold storage (SCS); however, the molecular mechanisms underlying these beneficial effects remain unclear. We performed an unbiased proteomics analysis of 28 kidney biopsies obtained at three time points from pig kidneys subjected to 30 min of warm ischemia, followed by 8 h of NEVKP or SCS, and auto-transplantation. 70/6593 proteins quantified were differentially expressed between NEVKP and SCS groups (false discovery rate < 0.05). Proteins increased in NEVKP mediated key metabolic processes including fatty acid ß-oxidation, the tricarboxylic acid cycle, and oxidative phosphorylation. Comparison of our findings with external datasets of ischemia-reperfusion and other models of kidney injury confirmed that 47 of our proteins represent a common signature of kidney injury reversed or attenuated by NEVKP. We validated key metabolic proteins (electron transfer flavoprotein subunit beta and carnitine O-palmitoyltransferase 2, mitochondrial) by immunoblotting. Transcription factor databases identified members of the peroxisome proliferator-activated receptors (PPAR) family of transcription factors as the upstream regulators of our dataset, and we confirmed increased expression of PPARA, PPARD, and RXRA in NEVKP with reverse transcription polymerase chain reaction. The proteome-level changes observed in NEVKP mediate critical metabolic pathways. These effects may be coordinated by PPAR-family transcription factors and may represent novel therapeutic targets in ischemia-reperfusion injury.


Assuntos
Rim/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Transplante de Rim , Masculino , Perfusão , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteômica , Suínos
3.
PLoS One ; 15(5): e0233639, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453760

RESUMO

Diabetes is the leading cause of end-stage renal disease worldwide. Our understanding of the early kidney response to chronic hyperglycemia remains incomplete. To address this, we first investigated the urinary proteomes of otherwise healthy youths with and without type 1 diabetes and subsequently examined the enriched pathways that might be dysregulated in early disease using systems biology approaches. This cross-sectional study included two separate cohorts for the discovery (N = 30) and internal validation (N = 30) of differentially excreted proteins. Discovery proteomics was performed on a Q Exactive Plus hybrid quadrupole-orbitrap mass spectrometer. We then searched the pathDIP, KEGG, and Reactome databases to identify enriched pathways in early diabetes; the Integrated Interactions Database to retrieve protein-protein interaction data; and the PubMed database to compare fold changes of our signature proteins with those published in similarly designed studies. Proteins were selected for internal validation based on pathway enrichment and availability of commercial enzyme-linked immunosorbent assay kits. Of the 2451 proteins identified, 576 were quantified in all samples from the discovery cohort; 34 comprised the urinary signature for early diabetes after Benjamini-Hochberg adjustment (Q < 0.05). The top pathways associated with this signature included lysosome, glycosaminoglycan degradation, and innate immune system (Q < 0.01). Notably, all enzymes involved in keratan sulfate degradation were significantly elevated in urines from youths with diabetes (|fold change| > 1.6). Increased urinary excretion of monocyte differentiation antigen CD14, hexosaminidase A, and lumican was also observed in the validation cohort (P < 0.05). Twenty-one proteins from our signature have been reported elsewhere as potential mediators of early diabetes. In this study, we identified a urinary proteomic signature for early type 1 diabetes, of which lysosomal enzymes were major constituents. Our findings highlight novel pathways such as keratan sulfate degradation in the early kidney response to hyperglycemia.


Assuntos
Diabetes Mellitus Tipo 1/urina , Sulfato de Queratano/metabolismo , Proteinúria/genética , Proteômica , Adolescente , Adulto , Criança , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Proteínas da Matriz Extracelular/urina , Feminino , Humanos , Sulfato de Queratano/genética , Rim/metabolismo , Rim/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Espectrometria de Massas , Proteinúria/metabolismo , Proteinúria/urina , Proteoma/genética , Proteoma/metabolismo , Adulto Jovem
4.
Mol Cell Proteomics ; 19(3): 501-517, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31879271

RESUMO

Chronic hyperglycemia is known to disrupt the proteolytic milieu, initiating compensatory and maladaptive pathways in the diabetic kidney. Such changes in intrarenal proteolysis are captured by the urinary peptidome. To elucidate the early kidney response to chronic hyperglycemia, we conducted a peptidomic investigation into urines from otherwise healthy youths with type 1 diabetes and their non-diabetic peers using unbiased and targeted mass spectrometry-based techniques. This cross-sectional study included two separate cohorts for the discovery (n = 30) and internal validation (n = 30) of differential peptide excretion. Peptide bioactivity was predicted using PeptideRanker and subsequently verified in vitro Proteasix and the Nephroseq database were used to identify putative proteases responsible for peptide generation and examine their expression in diabetic nephropathy. A total of 6550 urinary peptides were identified in the discovery analysis. We further examined the subset of 162 peptides, which were quantified across all thirty samples. Of the 15 differentially excreted peptides (p < 0.05), seven derived from a C-terminal region (589SGSVIDQSRVLNLGPITRK607) of uromodulin, a kidney-specific protein. Increased excretion of five uromodulin peptides was replicated in the validation cohort using parallel reaction monitoring (p < 0.05). One of the validated peptides (SGSVIDQSRVLNLGPI) activated NFκB and AP-1 signaling, stimulated cytokine release, and enhanced neutrophil migration in vitro. In silico analyses highlighted several potential proteases such as hepsin, meprin A, and cathepsin B to be responsible for generating these peptides. In summary, we identified a urinary signature of uromodulin peptides associated with early type 1 diabetes before clinical manifestations of kidney disease and discovered novel bioactivity of uromodulin peptides in vitro Our present findings lay the groundwork for future studies to validate peptide excretion in larger and broader populations, to investigate the role of bioactive uromodulin peptides in high glucose conditions, and to examine proteases that cleave uromodulin.


Assuntos
Diabetes Mellitus Tipo 1/urina , Peptídeos/urina , Uromodulina/urina , Adolescente , Linhagem Celular , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/urina , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Peptídeos/farmacologia , Proteômica , Uromodulina/farmacologia
5.
J Am Soc Nephrol ; 28(4): 1050-1061, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28159781

RESUMO

A number of proteomic and peptidomic analyses of urine from diabetic subjects have been published in the quest for a biomarker that predicts progression of nephropathy. Less attention has been paid to the relationships between urinary proteins and the underlying biological processes revealed by the analyses. In this review, we focus on the biological processes identified by studying urinary proteins and protein-protein interactions at each stage of diabetic nephropathy to provide an overview of the events underlying progression of kidney disease reflected in the urine. In uncomplicated diabetes, proteomic/peptidomic analyses indicate that early activation of fibrotic pathways in the kidney occurs before the onset of microalbuminuria. In incipient nephropathy, when albumin excretion rates are abnormal, proteomic/peptidomic analyses suggest that changes in glomerular permselectivity and tubular reabsorption account, at least in part, for the proteins and peptides that appear in the urine. Finally, overt nephropathy is characterized by proteins involved in wound healing, ongoing fibrosis, and inflammation. These findings suggest that there is a spectrum of biological processes in the diabetic kidney and that assessing protein networks may be more informative than individual markers with respect to the stage of disease and the risk of progression.


Assuntos
Biologia Computacional , Nefropatias Diabéticas/urina , Proteômica , Fenômenos Biológicos , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/fisiopatologia , Progressão da Doença , Humanos , Hiperglicemia/complicações
6.
Am J Physiol Renal Physiol ; 312(2): F335-F342, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733369

RESUMO

The relationship between the renal renin-angiotensin aldosterone system (RAAS) and cardiorenal pathophysiology is unclear. Our aims were to assess 1) levels of urinary RAAS components and 2) the association between RAAS components and HbA1c, the urine albumin/creatinine ratio (ACR), estimated glomerular filtration rate (eGFR), and blood pressure (BP) in otherwise healthy adolescents with type 1 diabetes mellitus (TID) vs. healthy controls (HC). Urinary angiotensinogen and angtionsin-converting enzyme (ACE) 2 levels, activity of ACE and ACE2, BP, HbA1c, ACR, and eGFR were measured in 65 HC and 194 T1D from the Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial (AdDIT). Urinary levels of all RAAS components were higher in T1D vs. HC (P < 0.0001). Higher HbA1c was associated with higher urinary angiotensinogen, ACE2, and higher activity of ACE and ACE2 (P < 0.0001, P = 0.0003, P = 0.003, and P = 0.007 respectively) in T1D. Higher ACR (within the normal range) was associated with higher urinary angiotensinogen (P < 0.0001) and ACE activity (P = 0.007), but not with urinary ACE2 activity or ACE2 levels. These observations were absent in HC. Urinary RAAS components were not associated with BP or eGFR in T1D or HC. Otherwise healthy adolescents with T1D exhibit higher levels of urinary RAAS components compared with HC. While levels of all urinary RAAS components correlate with HbA1c in T1D, only urinary angiotensinogen and ACE activity correlate with ACR, suggesting that these factors reflect an intermediary pathogenic link between hyperglycemia and albuminuria within the normal range.


Assuntos
Pressão Sanguínea/fisiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Rim/fisiopatologia , Sistema Renina-Angiotensina/fisiologia , Adolescente , Albuminúria/metabolismo , Angiotensinogênio/urina , Biomarcadores/metabolismo , Creatinina/urina , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Rim/metabolismo , Masculino , Peptidil Dipeptidase A/urina
7.
J Mol Cell Cardiol ; 91: 11-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26718721

RESUMO

Ischemia/reperfusion, which is characterized by deficient oxygen supply and subsequent restoration of blood flow, can cause irreversible damages to tissue. Mechanisms contributing to the pathogenesis of ischemia reperfusion injury are complex, multifactorial and highly integrated. Extensive research has focused on increasing organ tolerance to ischemia reperfusion injury, especially through the use of ischemic conditioning strategies. Of morbidities that potentially compromise the protective mechanisms of the heart, diabetes mellitus appears primarily important to study. Diabetes mellitus increases myocardial susceptibility to ischemia reperfusion injury and also modifies myocardial responses to ischemic conditioning strategies by disruption of intracellular signaling responsible for enhancement of resistance to cell death. The purpose of this review is twofold: first, to summarize mechanisms underlying ischemia reperfusion injury and the signal transduction pathways underlying ischemic conditioning cardioprotection; and second, to focus on diabetes mellitus and mechanisms that may be responsible for the lack of effect of ischemic conditioning strategies in diabetes.


Assuntos
Diabetes Mellitus/terapia , Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Apoptose , Cálcio/metabolismo , Complicações do Diabetes , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Estresse do Retículo Endoplasmático , Humanos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , Transdução de Sinais
8.
Isr Med Assoc J ; 16(8): 475-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25269336

RESUMO

"Clinician-scientists" is an all-inclusive term for board-certified specialists who engage in patient care and laboratory-based (biomedical) research, patient-based (clinical) research, or population-based (epidemiological) research. In recent years, the number of medical graduates who choose to combine patient care and research has declined, generating concerns about the future of medical research. This paper reviews: a) the various current categories of clinician-scientists, b) the reasons proposed for the declining number of medical graduates who opt for a career as clinician-scientists, c) the various interventions aimed at reversing this trend, and d) the projections for the future role of clinician-scientists. Efforts to encourage students to combine patient care and research include providing financial and institutional support, and reducing the duration of the training of clinician-scientists. However, recent advances in clinical and biomedical knowledge have increased the difficulties in maintaining the dual role of care-providers and scientists. It was therefore suggested that rather than expecting clinician-scientists to compete with full-time clinicians in providing patient care, and with full-time investigators in performing research, clinician-scientists will increasingly assume the role of leading/coordinating interdisciplinary teams. Such teams would focus either on patient-based research or on the clinical, biomedical and epidemiological aspects of specific clinical disorders, such as hypertension and diabetes.


Assuntos
Pesquisa Biomédica , Equipe de Assistência ao Paciente/organização & administração , Médicos/psicologia , Estudantes de Medicina/psicologia , Pesquisa Biomédica/métodos , Pesquisa Biomédica/organização & administração , Escolha da Profissão , Humanos , Motivação , Avaliação das Necessidades , Assistência ao Paciente/psicologia , Apoio à Pesquisa como Assunto , Apoio Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...