Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Infect Immun ; 91(12): e0030323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37982617

RESUMO

Klebsiella pneumoniae is a Gram-negative bacterium that causes a variety of human diseases, ranging from pneumonia to urinary tract infections and invasive diseases. The emergence of K. pneumoniae strains that are resistant to multiple antibiotics has made treatment more complex and led to K. pneumoniae becoming a global health threat. Addressing this threat necessitates the development of new therapeutic strategies to combat this pathogen, including strategies to overcome antimicrobial resistance and therapeutics for novel targets such as antivirulence. Here, we investigated the function of TolC, an outer membrane protein essential for the function of tripartite transporters, in K. pneumoniae. Mutation of tolC rendered K. pneumoniae hypersensitive to multiple antibiotics. Moreover, the tolC mutation impaired capsule production and affected the expression of key capsule biosynthetic genes, indicating a regulatory role for TolC in capsule biosynthesis. Additionally, TolC was essential for growth under iron-limiting conditions, suggesting its involvement in iron acquisition. The tolC mutant exhibited increased adherence to human enterocytes and enhanced serum sensitivity. In the Galleria mellonella infection model, the tolC mutant displayed reduced virulence compared to the wild type. Our findings highlight the pleiotropic role of TolC in K. pneumoniae pathobiology, influencing antimicrobial resistance, capsule production, iron homeostasis, adherence to host cells, and virulence. Understanding the multifaceted role of TolC in K. pneumoniae may guide the development of new therapeutic strategies against this pathogen. .


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Virulência , Antibacterianos , Farmacorresistência Bacteriana , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Ferro
2.
Front Microbiol ; 13: 800269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35591997

RESUMO

Campylobacter jejuni causes foodborne gastroenteritis and may trigger acute autoimmune sequelae including Guillain Barré Syndrome. Onset of neuromuscular paralysis is associated with exposure to C. jejuni lipooligosaccharide (LOS) classes A, B, C, D, and E that mimic and evoke antibodies against gangliosides on myelin and axons of peripheral nerves. Family members managing a Michigan dairy operation reported recurring C. jejuni gastroenteritis. Because dairy cattle are known to shed C. jejuni, we hypothesized that calves in the sick pen were the source of human infections. Fecal samples obtained from twenty-five calves, one dog, and one asymptomatic family member were cultured for Campylobacter. C. jejuni isolates were obtained from thirteen calves and the family member: C. coli from two calves, and C. hyointestinalis from two calves. Some calves had diarrhea; most were clinically normal. Typing of lipooligosaccharide biosynthetic loci showed that eight calf C. jejuni isolates fell into classes A, B, and C. Two calf isolates and the human isolate possessed LOS class E, associated mainly with enteric disease and rarely with Guillain Barré Syndrome. Multi-locus sequence typing, porA and flaA typing, and whole genome comparisons of the thirteen C. jejuni isolates indicated that the three LOS class E strains that included the human isolate were closely related, indicating zoonotic transmission. Whole-genome comparisons revealed that isolates differed in virulence gene content, particularly in loci encoding biosynthesis of surface structures. Family members experienced diarrheal illness repeatedly over 2 years, yet none experienced GBS despite exposure to calves carrying invasive C. jejuni with LOS known to elicit antiganglioside autoantibodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...