Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Stem Cell Res Ther ; 11(1): 417, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32988411

RESUMO

BACKGROUND: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) show tremendous promise for cardiac regeneration, but the successful development of hESC-CM-based therapies requires improved tools to investigate their electrical behavior in recipient hearts. While optical voltage mapping is a powerful technique for studying myocardial electrical activity ex vivo, we have previously shown that intra-cardiac hESC-CM grafts are not labeled by conventional voltage-sensitive fluorescent dyes. We hypothesized that the water-soluble voltage-sensitive dye di-2-ANEPEQ would label engrafted hESC-CMs and thereby facilitate characterization of graft electrical function and integration. METHODS: We developed and validated a novel optical voltage mapping strategy based on the simultaneous imaging of the calcium-sensitive fluorescent protein GCaMP3, a graft-autonomous reporter of graft activation, and optical action potentials (oAPs) derived from di-2-ANEPEQ, which labels both graft and host myocardium. Cardiomyocytes from three different GCaMP3+ hESC lines (H7, RUES2, or ESI-17) were transplanted into guinea pig models of subacute and chronic infarction, followed by optical mapping at 2 weeks post-transplantation. RESULTS: Use of a water-soluble voltage-sensitive dye revealed pro-arrhythmic properties of GCaMP3+ hESC-CM grafts from all three lines including slow conduction velocity, incomplete host-graft coupling, and spatially heterogeneous patterns of activation that varied beat-to-beat. GCaMP3+ hESC-CMs from the RUES2 and ESI-17 lines both showed prolonged oAP durations both in vitro and in vivo. Although hESC-CMs partially remuscularize the injured hearts, histological evaluation revealed immature graft structure and impaired gap junction expression at this early timepoint. CONCLUSION: Simultaneous imaging of GCaMP3 and di-2-ANEPEQ allowed us to acquire the first unambiguously graft-derived oAPs from hESC-CM-engrafted hearts and yielded critical insights into their arrhythmogenic potential and line-to-line variation.


Assuntos
Células-Tronco Embrionárias Humanas , Miócitos Cardíacos , Animais , Diferenciação Celular , Células-Tronco Embrionárias , Cobaias , Miocárdio
3.
PLoS One ; 15(1): e0227780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945113

RESUMO

The engraftment of human stem cell-derived cardiomyocytes (hSC-CMs) is a promising treatment for remuscularizing the heart wall post-infarction, but it is plagued by low survival of transplanted cells. We hypothesize that this low survival rate is due to continued ischemia within the infarct, and that increasing the vascularization of the scar will ameliorate the ischemia and improve hSC-CM survival and engraftment. An adenovirus expressing the vascular growth factor Sonic Hedgehog (Shh) was injected into the infarcted myocardium of rats immediately after ischemia/reperfusion, four days prior to hSC-CM injection. By two weeks post-cell injection, Shh treatment had successfully increased capillary density outside the scar, but not within the scar. In addition, there was no change in vessel size or percent vascular volume when compared to cell injection alone. Micro-computed tomography revealed that Shh failed to increase the number and size of larger vessels. It also had no effect on graft size or heart function when compared to cell engraftment alone. Our data suggests that, when combined with the engraftment of hSC-CMs, expression of Shh within the infarct scar and surrounding myocardium is unable to increase vascularization of the infarct scar, and it does not improve survival or function of hSC-CM grafts.


Assuntos
Proteínas Hedgehog/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Adenoviridae/genética , Animais , Diferenciação Celular , Vasos Coronários/diagnóstico por imagem , Modelos Animais de Doenças , Vetores Genéticos/genética , Coração/diagnóstico por imagem , Proteínas Hedgehog/genética , Humanos , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/mortalidade , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Traumatismo por Reperfusão/complicações , Taxa de Sobrevida , Transfecção , Resultado do Tratamento , Regulação para Cima , Microtomografia por Raio-X
4.
Nature ; 510(7504): 273-7, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24776797

RESUMO

Pluripotent stem cells provide a potential solution to current epidemic rates of heart failure by providing human cardiomyocytes to support heart regeneration. Studies of human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) in small-animal models have shown favourable effects of this treatment. However, it remains unknown whether clinical-scale hESC-CM transplantation is feasible, safe or can provide sufficient myocardial regeneration. Here we show that hESC-CMs can be produced at a clinical scale (more than one billion cells per batch) and cryopreserved with good viability. Using a non-human primate model of myocardial ischaemia followed by reperfusion, we show that cryopreservation and intra-myocardial delivery of one billion hESC-CMs generates extensive remuscularization of the infarcted heart. The hESC-CMs showed progressive but incomplete maturation over a 3-month period. Grafts were perfused by host vasculature, and electromechanical junctions between graft and host myocytes were present within 2 weeks of engraftment. Importantly, grafts showed regular calcium transients that were synchronized to the host electrocardiogram, indicating electromechanical coupling. In contrast to small-animal models, non-fatal ventricular arrhythmias were observed in hESC-CM-engrafted primates. Thus, hESC-CMs can remuscularize substantial amounts of the infarcted monkey heart. Comparable remuscularization of a human heart should be possible, but potential arrhythmic complications need to be overcome.


Assuntos
Células-Tronco Embrionárias/citologia , Coração , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Regeneração , Animais , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Sobrevivência Celular , Vasos Coronários/fisiologia , Criopreservação , Modelos Animais de Doenças , Eletrocardiografia , Humanos , Macaca nemestrina , Masculino , Camundongos , Medicina Regenerativa/métodos
5.
Stem Cells Transl Med ; 3(6): 734-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24736402

RESUMO

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can regenerate infarcted myocardium. However, when implanted into acutely infarcted hearts, few cells survive the first week postimplant. To improve early graft survival, hESC-CMs were pretreated with cobalt protoporphyrin (CoPP), a transcriptional activator of cytoprotective heme oxygenase-1 (HO-1). When hESC-CMs were challenged with an in vitro hypoxia/reoxygenation injury, mimicking cell transplantation into an ischemic site, survival was significantly greater among cells pretreated with CoPP versus phosphate-buffered saline (PBS)-pretreated controls. Compared with PBS-pretreated cells, CoPP-pretreated hESC-CM preparations exhibited higher levels of HO-1 expression, Akt phosphorylation, and vascular endothelial growth factor production, with reduced apoptosis, and a 30% decrease in intracellular reactive oxygen species. For in vivo translation, 1 × 10(7) hESC-CMs were pretreated ex vivo with CoPP or PBS and then injected intramyocardially into rat hearts immediately following acute infarction (permanent coronary ligation). At 1 week, hESC-CM content, assessed by quantitative polymerase chain reaction for human Alu sequences, was 17-fold higher in hearts receiving CoPP- than PBS-pretreated cells. On histomorphometry, cardiomyocyte graft size was 2.6-fold larger in hearts receiving CoPP- than PBS-pretreated cells, occupying up to 12% of the ventricular area. Vascular density of host-perfused human-derived capillaries was significantly greater in grafts composed of CoPP- than PBS-pretreated cells. Taken together, these experiments demonstrate that ex vivo pretreatment of hESC-CMs with a single dose of CoPP before intramyocardial implantation more than doubled resulting graft size and improved early graft vascularization in acutely infarcted hearts. These findings open the door for delivery of these, or other, stem cells during acute interventional therapy following myocardial infarction or ischemia.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/transplante , Infarto do Miocárdio/cirurgia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/transplante , Protoporfirinas/farmacologia , Regeneração , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Células-Tronco Embrionárias/enzimologia , Células-Tronco Embrionárias/patologia , Indução Enzimática , Feminino , Sobrevivência de Enxerto , Heme Oxigenase-1/biossíntese , Humanos , Masculino , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Nus , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Nature ; 489(7415): 322-5, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22864415

RESUMO

Transplantation studies in mice and rats have shown that human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) can improve the function of infarcted hearts, but two critical issues related to their electrophysiological behaviour in vivo remain unresolved. First, the risk of arrhythmias following hESC-CM transplantation in injured hearts has not been determined. Second, the electromechanical integration of hESC-CMs in injured hearts has not been demonstrated, so it is unclear whether these cells improve contractile function directly through addition of new force-generating units. Here we use a guinea-pig model to show that hESC-CM grafts in injured hearts protect against arrhythmias and can contract synchronously with host muscle. Injured hearts with hESC-CM grafts show improved mechanical function and a significantly reduced incidence of both spontaneous and induced ventricular tachycardia. To assess the activity of hESC-CM grafts in vivo, we transplanted hESC-CMs expressing the genetically encoded calcium sensor, GCaMP3 (refs 4, 5). By correlating the GCaMP3 fluorescent signal with the host ECG, we found that grafts in uninjured hearts have consistent 1:1 host­graft coupling. Grafts in injured hearts are more heterogeneous and typically include both coupled and uncoupled regions. Thus, human myocardial grafts meet physiological criteria for true heart regeneration, providing support for the continued development of hESC-based cardiac therapies for both mechanical and electrical repair.


Assuntos
Arritmias Cardíacas/terapia , Fenômenos Eletrofisiológicos , Células-Tronco Embrionárias/citologia , Traumatismos Cardíacos/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Cálcio/análise , Cálcio/metabolismo , Estimulação Elétrica , Corantes Fluorescentes/análise , Cobaias , Traumatismos Cardíacos/complicações , Traumatismos Cardíacos/patologia , Humanos , Medições Luminescentes , Masculino , Contração Miocárdica/fisiologia , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/terapia
7.
Methods Mol Biol ; 767: 419-31, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21822893

RESUMO

The availability of human cardiomyocytes derived from embryonic stem cells (ESCs) has generated -considerable excitement, as these cells are an excellent model system for studying myocardial development and may have eventual application in cell-based cardiac repair. Cardiomyocytes derived from the related induced pluripotent stem cells (iPSCs) have similar properties, but also offer the prospects of patient-specific disease modeling and cell therapies. Unfortunately, the methods by which cardiomyocytes have been historically generated from pluripotent stem cells are unreliable and typically result in preparations of low cardiac purity (typically <1% cardiomyocytes). We detail here the methods for a recently reported directed cardiac differentiation protocol, which involves the serial application of two growth factors known to be involved in early embryonic heart development, activin A, and bone morphogenetic protein-4 (BMP-4). This protocol reliably yields preparations of 30-60% cardiomyocytes, which can then be further enriched to >90% cardiomyocytes using straightforward physical methods.


Assuntos
Técnicas de Cultura de Células/métodos , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Ativinas/farmacologia , Animais , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Centrifugação com Gradiente de Concentração , Colágeno/farmacologia , Criopreservação , Meios de Cultivo Condicionados/farmacologia , Combinação de Medicamentos , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Laminina/farmacologia , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Povidona , Proteoglicanas/farmacologia , Dióxido de Silício
8.
Nucleic Acids Res ; 39(16): 7020-33, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21622658

RESUMO

DNA polymerase I (pol I) processes RNA primers during lagging-strand synthesis and fills small gaps during DNA repair reactions. However, it is unclear how pol I and pol III work together during replication and repair or how extensive pol I processing of Okazaki fragments is in vivo. Here, we address these questions by analyzing pol I mutations generated through error-prone replication of ColE1 plasmids. The data were obtained by direct sequencing, allowing an accurate determination of the mutation spectrum and distribution. Pol I's mutational footprint suggests: (i) during leading-strand replication pol I is gradually replaced by pol III over at least 1.3 kb; (ii) pol I processing of Okazaki fragments is limited to ∼20 nt and (iii) the size of Okazaki fragments is short (∼250 nt). While based on ColE1 plasmid replication, our findings are likely relevant to other pol I replicative processes such as chromosomal replication and DNA repair, which differ from ColE1 replication mostly at the recruitment steps. This mutation footprinting approach should help establish the role of other prokaryotic or eukaryotic polymerases in vivo, and provides a tool to investigate how sequence topology, DNA damage, or interactions with protein partners may affect the function of individual DNA polymerases.


Assuntos
DNA Polimerase I/metabolismo , Replicação do DNA , Mutação , Plasmídeos/biossíntese , Sequência de Bases , DNA/metabolismo , Pegada de DNA , DNA Polimerase I/genética , DNA Polimerase I/fisiologia , Bases de Dados de Ácidos Nucleicos , Plasmídeos/química
9.
Regen Med ; 6(1): 53-66, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21175287

RESUMO

AIM: Human embryonic stem cells (hESCs) represent a novel cell source to treat diseases such as heart failure and for use in drug screening. In this study, we aim to promote efficient generation of cardiomyocytes from hESCs by combining the current optimal techniques of controlled growth of undifferentiated cells and specific induction for cardiac differentiation. We also aim to examine whether these methods are scalable and whether the differentiated cells can be cryopreserved. METHODS & RESULTS: hESCs were maintained without conditioned medium or feeders and were sequentially treated with activin A and bone morphogenetic protein-4 in a serum-free medium. This led to differentiation into cell populations containing high percentages of cardiomyocytes. The differentiated cells expressed appropriate cardiomyocyte markers and maintained contractility in culture, and the majority of the cells displayed working chamber (atrial and ventricular) type electrophysiological properties. In addition, the cell growth and differentiation process was adaptable to large culture formats. Moreover, the cardiomyocytes survived following cryopreservation, and viable cardiac grafts were detected after transplantation of cryopreserved cells into rat hearts following myocardial infarctions. CONCLUSION: These results demonstrate that cardiomyocytes of high quality can be efficiently generated and cryopreserved using hESCs maintained in serum-free medium, a step forward towards the application of these cells to human clinical use or drug discovery.


Assuntos
Criopreservação/métodos , Células-Tronco Embrionárias/citologia , Miócitos Cardíacos , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Meios de Cultura Livres de Soro , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos
10.
J Cell Biochem ; 111(3): 585-96, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20564236

RESUMO

Proteoglycans and hyaluronan play critical roles in heart development. In this study, human embryonic stem cells (hESC) were used as a model to quantify the synthesis of proteoglycans and hyaluronan in hESC in the early stages of differentiation, and after directed differentiation into cardiomyocytes. We demonstrated that both hESC and cardiomyocyte cultures synthesize an extracellular matrix (ECM) enriched in proteoglycans and hyaluronan. During cardiomyocyte differentiation, total proteoglycan and hyaluronan decreased and the proportion of proteoglycans bearing heparan sulfate chains was reduced. Versican, a chondroitin sulfate proteoglycan, accumulated in hESC and cardiomyocyte cultures. Furthermore, versican synthesized by hESC contained more N- and O-linked oligosaccharide than versican from cardiomyocytes. Transcripts for the versican variants, V0, V1, V2, and V3, increased in cardiomyocytes compared to hESC, with V1 most abundant. Hyaluronan in hESC had lower molecular weight than hyaluronan from cardiomyocyte cultures. These changes were accompanied by an increase in HAS-1 and HAS-2 mRNA in cardiomyocyte cultures, with HAS-2 most abundant. Interestingly, HAS-3 was absent from the cardiomyocyte cultures, but expressed by hESC. These results indicate that human cardiomyocyte differentiation is accompanied by specific changes in the expression and accumulation of ECM components and suggest a role for versican and hyaluronan in this process.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Matriz Extracelular/metabolismo , Ácido Hialurônico/biossíntese , Miócitos Cardíacos/citologia , Versicanas/biossíntese , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/metabolismo , Humanos , Ácido Hialurônico/química , Estrutura Molecular , Peso Molecular , Miócitos Cardíacos/química , Miócitos Cardíacos/metabolismo , Versicanas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...