Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Clin Inform ; 8(2): 560-580, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561130

RESUMO

OBJECTIVES: This study evaluates the accuracy and portability of a natural language processing (NLP) tool for extracting clinical findings of influenza from clinical notes across two large healthcare systems. Effectiveness is evaluated on how well NLP supports downstream influenza case-detection for disease surveillance. METHODS: We independently developed two NLP parsers, one at Intermountain Healthcare (IH) in Utah and the other at University of Pittsburgh Medical Center (UPMC) using local clinical notes from emergency department (ED) encounters of influenza. We measured NLP parser performance for the presence and absence of 70 clinical findings indicative of influenza. We then developed Bayesian network models from NLP processed reports and tested their ability to discriminate among cases of (1) influenza, (2) non-influenza influenza-like illness (NI-ILI), and (3) 'other' diagnosis. RESULTS: On Intermountain Healthcare reports, recall and precision of the IH NLP parser were 0.71 and 0.75, respectively, and UPMC NLP parser, 0.67 and 0.79. On University of Pittsburgh Medical Center reports, recall and precision of the UPMC NLP parser were 0.73 and 0.80, respectively, and IH NLP parser, 0.53 and 0.80. Bayesian case-detection performance measured by AUROC for influenza versus non-influenza on Intermountain Healthcare cases was 0.93 (using IH NLP parser) and 0.93 (using UPMC NLP parser). Case-detection on University of Pittsburgh Medical Center cases was 0.95 (using UPMC NLP parser) and 0.83 (using IH NLP parser). For influenza versus NI-ILI on Intermountain Healthcare cases performance was 0.70 (using IH NLP parser) and 0.76 (using UPMC NLP parser). On University of Pisstburgh Medical Center cases, 0.76 (using UPMC NLP parser) and 0.65 (using IH NLP parser). CONCLUSION: In all but one instance (influenza versus NI-ILI using IH cases), local parsers were more effective at supporting case-detection although performances of non-local parsers were reasonable.


Assuntos
Monitoramento Epidemiológico , Influenza Humana/epidemiologia , Informática Médica/métodos , Processamento de Linguagem Natural , Centros Médicos Acadêmicos , Registros Eletrônicos de Saúde , Humanos , Saúde Pública
2.
PLoS One ; 12(4): e0174970, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28380048

RESUMO

OBJECTIVES: This study evaluates the accuracy and transferability of Bayesian case detection systems (BCD) that use clinical notes from emergency department (ED) to detect influenza cases. METHODS: A BCD uses natural language processing (NLP) to infer the presence or absence of clinical findings from ED notes, which are fed into a Bayesain network classifier (BN) to infer patients' diagnoses. We developed BCDs at the University of Pittsburgh Medical Center (BCDUPMC) and Intermountain Healthcare in Utah (BCDIH). At each site, we manually built a rule-based NLP and trained a Bayesain network classifier from over 40,000 ED encounters between Jan. 2008 and May. 2010 using feature selection, machine learning, and expert debiasing approach. Transferability of a BCD in this study may be impacted by seven factors: development (source) institution, development parser, application (target) institution, application parser, NLP transfer, BN transfer, and classification task. We employed an ANOVA analysis to study their impacts on BCD performance. RESULTS: Both BCDs discriminated well between influenza and non-influenza on local test cases (AUCs > 0.92). When tested for transferability using the other institution's cases, BCDUPMC discriminations declined minimally (AUC decreased from 0.95 to 0.94, p<0.01), and BCDIH discriminations declined more (from 0.93 to 0.87, p<0.0001). We attributed the BCDIH decline to the lower recall of the IH parser on UPMC notes. The ANOVA analysis showed five significant factors: development parser, application institution, application parser, BN transfer, and classification task. CONCLUSION: We demonstrated high influenza case detection performance in two large healthcare systems in two geographically separated regions, providing evidentiary support for the use of automated case detection from routinely collected electronic clinical notes in national influenza surveillance. The transferability could be improved by training Bayesian network classifier locally and increasing the accuracy of the NLP parser.


Assuntos
Técnicas de Apoio para a Decisão , Influenza Humana/diagnóstico , Transferência de Tecnologia , Adolescente , Adulto , Idoso , Teorema de Bayes , Criança , Pré-Escolar , Atenção à Saúde , Registros Eletrônicos de Saúde , Serviço Hospitalar de Emergência , Humanos , Lactente , Recém-Nascido , Aprendizado de Máquina , Pessoa de Meia-Idade , Processamento de Linguagem Natural , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...