Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540120

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease that may be treated utilizing thermal therapies. Cryoablation is an effective, minimally invasive therapy that has been utilized for the treatment of various cancers, offering patients a quicker recovery and reduced side effects. Cryoablation has been utilized on a limited basis for the treatment of PDAC. With the recent reports on the success of cryoablation, there is a growing interest in the use of cryoablation as a standalone, minimally invasive procedure to treat PDAC. While offering a promising path, the application of cryoablation to PDAC is limited by current technologies. As such, there is a need for the development of new devices to support advanced treatment strategies for PDAC. To this end, this study investigated the performance of a new endoscopic ultrasound-compatible cryoablation catheter technology, FrostBite. We hypothesized that FrostBite would enable the rapid, effective, minimally invasive delivery of ultra-cold temperatures to target tissues, resulting in effective ablation via an endoscopic approach. Thermal properties and ablative efficacy were evaluated using a heat-loaded gel model, tissue-engineered models (TEMs), and an initial in vivo porcine study. Freeze protocols evaluated included single and repeat 3 and 5 min applications. Isotherm assessment revealed the generation of a 2.2 cm diameter frozen mass with the -20 °C isotherm reaching a diameter of 1.5 cm following a single 5 min freeze. TEM studies revealed the achievement of temperatures ≤ -20 °C at a diameter of 1.9 cm after a 5 min freeze. Fluorescent imaging conducted 24 h post-thaw demonstrated a uniformly shaped ellipsoidal ablative zone with a midline diameter of 2.5 cm, resulting in a total ablative volume of 6.9 cm3 after a single 5 min freeze. In vivo findings consistently demonstrated the generation of ablative areas measuring 2.03 cm × 3.2 cm. These studies demonstrate the potential of the FrostBite cryocatheter as an endoscopic ultrasound-based treatment option. The data suggest that FrostBite may provide for the rapid, effective, controllable freezing of cancerous pancreatic and liver tissues. This ablative power also offers the potential of improved safety margins via the minimally invasive nature of an endoscopic ultrasound-based approach or natural orifice transluminal endoscopic surgery (NOTES)-based approach. The results of this pre-clinical feasibility study show promise, affirming the need for further investigation into the potential of the FrostBite cryocatheter as an advanced, minimally invasive cryoablative technology.

2.
J Endourol ; 38(5): 513-520, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38279787

RESUMO

Purpose: To assess the ability to deliver full-thickness bladder wall cryoablation through a cystoscopic approach using a new closed-loop 6F cryocatheter and thermal dose-controlled protocol. Materials and Methods: Evaluations were conducted using a chronic porcine model wherein 10 lesions/animal were created throughout the bladder (bladder wall, trigone region, ureteral orifice, and distal ureter). A 6F cryocatheter was passed through the working channel of a flexible cystoscope. Single 1- and 1.5-minute freeze protocols in a saline environment were evaluated and resultant lesion size was determined. A laparoscopic approach was utilized to observe the transmural extension of the ice propagation. Results: Studies demonstrated the generation of transmural lesions characterized by full-thickness histologic necrosis after freezing for 1.5 minutes regardless of tissue thickness (range 2-12 mm). All animals were found to have good overall health (maintained weight, appetite, mobility, and energy levels) throughout the recovery period. No significant deviations were noted in complete blood count and serum chemistry bloodwork except for elevated creatine kinase levels. Importantly, no fistulas or perforations were noted. Conclusions: The cryocatheter was able to rapidly and effectively freeze the bladder wall through a cystoscopic approach. The results showed the ability to consistently ablate an ∼1 cm diameter and up to 1.2 cm deep using a single 1.5-minute freeze protocol. Analysis of the ablation efficacy revealed ∼80% destruction within the frozen mass. Although further testing and refinement are needed, these studies demonstrate the potential of this new approach to provide a next-generation strategy for the treatment of bladder cancer.


Assuntos
Criocirurgia , Cistoscopia , Neoplasias da Bexiga Urinária , Bexiga Urinária , Animais , Criocirurgia/métodos , Neoplasias da Bexiga Urinária/cirurgia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Cistoscopia/métodos , Bexiga Urinária/cirurgia , Bexiga Urinária/patologia , Sus scrofa , Dados Preliminares , Suínos
3.
Biomedicines ; 10(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35203660

RESUMO

As the incidence of pancreatic ductal adenocarcinoma (PDAC) continues to grow, so does the need for new strategies for treatment. One such area being evaluated is cryoablation. While promising, studies remain limited and questions surrounding basic dosing (minimal lethal temperature) coupled with technological issues associated with accessing PDAC tumors and tumor proximity to vasculature and bile ducts, among others, have limited the use of cryoablation. Additionally, as chemotherapy remains the first-line of attack for PDAC, there is limited information on the impact of combining freezing with chemotherapy. As such, this study investigated the in vitro response of a PDAC cell line to freezing, chemotherapy, and the combination of chemotherapy pre-treatment and freezing. PANC-1 cells and PANC-1 tumor models were exposed to cryoablation (freezing insult) and compared to non-frozen controls. Additionally, PANC-1 cells were exposed to varying sub-clinical doses of gemcitabine or oxaliplatin alone and in combination with freezing. The results show that freezing to -10 °C did not affect viability, whereas -15 °C and -20 °C resulted in a reduction in 1 day post-freeze viability to 85% and 20%, respectively, though both recovered to controls by day 7. A complete cell loss was found following a single freeze below -25 °C. The combination of 100 nM gemcitabine (1.1 mg/m2) pre-treatment and a single freeze at -15 °C resulted in near-complete cell death (<5% survival) over the 7-day assessment interval. The combination of 8.8 µM oxaliplatin (130 mg/m2) pre-treatment and a single -15 °C freeze resulted in a similar trend of increased PANC-1 cell death. In summary, these in vitro results suggest that freezing alone to temperatures in the range of -25 °C results in a high degree of PDAC destruction. Further, the data support a potential combinatorial chemo/cryo-therapeutic strategy for the treatment of PDAC. These results suggest that a reduction in chemotherapeutic dose may be possible when offered in combination with freezing for the treatment of PDAC.

4.
Cells ; 11(2)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35053394

RESUMO

The development and use of complex cell-based products in clinical and discovery science continues to grow at an unprecedented pace. To this end, cryopreservation plays a critical role, serving as an enabling process, providing on-demand access to biological material, facilitating large scale production, storage, and distribution of living materials. Despite serving a critical role and substantial improvements over the last several decades, cryopreservation often remains a bottleneck impacting numerous areas including cell therapy, tissue engineering, and tissue banking. Studies have illustrated the impact and benefit of controlling cryopreservation-induced delayed-onset cell death (CIDOCD) through various "front end" strategies, such as specialized media, new cryoprotective agents, and molecular control during cryopreservation. While proving highly successful, a substantial level of cell death and loss of cell function remains associated with cryopreservation. Recently, we focused on developing technologies (RevitalICE™) designed to reduce the impact of CIDOCD through buffering the cell stress response during the post-thaw recovery phase in an effort to improve the recovery of previously cryopreserved samples. In this study, we investigated the impact of modulating apoptotic caspase activation, oxidative stress, unfolded protein response, and free radical damage in the initial 24 h post-thaw on overall cell survival. Human hematopoietic progenitor cells in vitro cryopreserved in both traditional extracellular-type and intracellular-type cryopreservation freeze media were utilized as a model cell system to assess impact on survival. Our findings demonstrated that through the modulation of several of these pathways, improvements in cell recovery were obtained, regardless of the freeze media and dimethyl sulfoxide concentration utilized. Specifically, through the use of oxidative stress inhibitors, an average increase of 20% in overall viability was observed. Furthermore, the results demonstrated that by using the post-thaw recovery reagent on samples cryopreserved in intracellular-type media (Unisol™), improvements in overall cell survival approaching 80% of non-frozen controls were attained. While improvements in overall survival were obtained, an assessment on the impact of specific cell subpopulations and functionality remains to be completed. While work remains, these results represent an important step forward in the development of improved cryopreservation processes for use in discovery science, and commercial and clinical settings.


Assuntos
Criopreservação , Células-Tronco Hematopoéticas/metabolismo , Modelos Biológicos , Estresse Fisiológico , Linhagem Celular , Sobrevivência Celular , Congelamento , Humanos
5.
Breast Cancer (Auckl) ; 14: 1178223420972363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33239880

RESUMO

INTRODUCTION: Breast cancer is the most prominent form of cancer and the second leading cause of death in women behind lung cancer. The primary modes of treatment today include surgical excision (lumpectomy, mastectomy), radiation, chemoablation, anti-HER2/neu therapy, and/or hormone therapy. The severe side effects associated with these therapies suggest a minimally invasive therapy with fewer quality of life issues would be advantageous for treatment of this pervasive disease. Cryoablation has been used in the treatment of other cancers, including prostate, skin, and cervical, for decades and has been shown to be a successful minimally invasive therapeutic option. To this end, the use of cryotherapy for the treatment of breast cancer has increased over the last several years. Although successful, one of the challenges in cryoablation is management of cancer destruction in the periphery of the ice ball as the tissue within this outer margin may not experience ablative temperatures. In breast cancer, this is of concern due to the lobular nature of the tumors. As such, in this study, we investigated the level of cell death at various temperatures associated with the margin of a cryogenic lesion as well as the impact of repetitive freezing and thawing methods on overall efficacy. METHODS: Human breast cancer cells, MCF-7, were exposed to temperatures of -5°C, -10°C, -15°C, -20°C, or -25°C for 5-minute freeze intervals in a single or repeat freeze-thaw cycle. Samples were thawed with either passive or active warming for 5 or 10 minutes. Samples were assessed at 1, 2, and 3 days post-freeze to assess cell survival and recovery. In addition, the modes of cell death associated with freezing were assessed over the initial 24-hour post-thaw recovery period. RESULTS: Exposure of MCF-7 cells to -5°C and -10°C resulted in minimal cell death regardless of the freeze/thaw conditions. Freezing to a temperature of -25°C resulted in complete cell death 1 day post-thaw with no cell recovery in all freeze/thaw scenarios evaluated. Exposure to a single freeze event resulted in a gradual increase in cell death at -15°C and -20°C. Application of a repeat freeze-thaw cycle (dual 5-minute freeze) resulted in an increase in cell death with complete destruction at -20°C and near complete death at -15°C (day 1 survival: single -15°C freeze/thaw = 20%; repeated -15°C freeze/thaw = 4%). Analysis of thaw interval time (5 vs 10 minute) demonstrated that the shorter 5-minute thaw interval between freezes resulted in increased cell destruction. Furthermore, investigation of thaw rate (active vs passive thawing) demonstrated that active thawing resulted in increased cell survival thereby less effective ablation compared with passive thawing (eg, -15°C 5/10/5 procedure survival, passive thaw: 4% vs active thaw: 29%). CONCLUSIONS: In summary, these in vitro findings suggest that freezing to temperatures of 25°C results in a high degree of breast cancer cell destruction. Furthermore, the data demonstrate that the application of a repeat freeze procedure with a passive 5-minute or 10-minute thaw interval between freeze cycles increases the minimal lethal temperature to the -15°C to -20°C range. The data also demonstrate that the use of an active thawing procedure between freezes reduces ablation efficacy at temperatures associated with the iceball periphery. These findings may be important to improving future clinical applications of cryoablation for the treatment of breast cancer.

6.
Clin Res (Milpitas) ; 6(1)2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35128225

RESUMO

Due to a rising annual incidence of bladder cancer, there is a growing need for development of new strategies for treatment. In 2018, the World Cancer Research Fund and other groups reported that there were ~550,000 new cases worldwide of bladder cancer. It has been further estimated that >200,000 individuals die annually from bladder cancer worldwide. Various treatment options exist. However, many if not all remain suboptimal. While the preferred chemotherapeutic options have changed in the past few years there have been few advances in the bladder cancer medical device field. Cryoablation is now being evaluated as a new option for the treatment of bladder cancer. While several studies have shown cryoablation to be promising for the treatment of bladder cancer, a lack of basic information pertaining to dosing (minimal lethal temperature) necessary to destroy bladder cancer has limited its use as a primary therapeutic option. Concerns with bladder wall perforation and other side effects have also slowed adoption. In an effort to detail the effects of freezing on bladder cancer, two human bladder cancer cell lines, SCaBER and UMUC3, were evaluated in vitro. SCaBER, a basal subtype of muscle invasive bladder cancer, and UMUC3, an intermediate transitional cell carcinoma, are both difficult to treat but are reportedly responsive to most conventional treatments. SCaBER and UMUC3 cells were exposed to a range of freezing temperatures from -10 to -25°C and compared to non-frozen controls. The data show that a single 5 minute freeze to -10°C did not affect cell viability, whereas -15°C and -20°C results in a significant reduction in viability 1 day post freeze to <20%. These populations, however, were able to recover in culture. A complete loss of cell viability was found following a single freeze at -25°C. Application of a repeat (double) freeze resulted in complete cell death at -20°C. In addition to freezing alone, studies investigating the impact of adjunctive low dose (1 µM) cisplatin pre-treatment (30 minutes and 24 hours) in combination with freezing were conducted. The combination of 30 minute cisplatin pre-treatment and mild (-15°C) freezing resulted in complete cell death. This suggests that subclinical doses of cisplatin may be synergistically effective when combined with freezing. In summary, these in vitro results suggest that freezing to temperatures in the range of -20 to 25°C results in a high degree of bladder cancer cell destruction. Further, the data describe a potential combinatorial chemo/cryo therapeutic strategy for the treatment of bladder cancer.

7.
Int J Hyperthermia ; 36(sup1): 10-16, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31795837

RESUMO

Cryoablation (CA) is unique as the singular energy deprivation therapy that impacts all cellular processes. CA is independent of cell cycle stage and degree of cellular stemness. Importantly, CA is typically applied as a non-repetitive (single session) treatment that does not support adaptative mutagenesis as do many repetitive therapies. CA is characterized by the launch of multiple forms of cell death including (a) ice-related physical damage, (b) initiation of cellular stress responses (kill switch activation) and launch of necrosis and apoptosis, (c) vascular stasis, and (d) likely activation of ablative immune responses. CA is not without limitation related to the thermal gradient formed between cryoprobe surface (∼-185°C) and the distal surface of the freeze zone (∼0°C) requiring freeze margin extension beyond the tumor boundary (up to ∼1 cm). This limitation is mitigated in part by commonly applied dual freeze thaw cycles and the use of freeze sensitizing adjuvants. This review will (1) identify the cascade of damaging effects of the freeze-thaw process, its physical and molecular-based relationships, (2) a likely immunological involvement (abscopic effect), and (3) explore the use of freeze-sensitizing adjuvants necessary to limit freezing beyond the tumor margin.


Assuntos
Criocirurgia/métodos , Humanos
8.
SAGE Open Med ; 6: 2050312118769797, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29770216

RESUMO

OBJECTIVES: Cryoablation is an effective alternative treatment for cardiac arrhythmias offering shortened recovery and reduced side effects. As the use of cryoablation increases, the need for new devices and procedures has emerged. This has been driven by technological limitations including lengthy periods to generate a single lesion (3-5 min), uncertain transmurality, and differential efficacy. Furthermore, due to limited ablation capacity under high heat loads, cryo has had limited success in the treatment of ventricular arrhythmias. To this end, in this study we evaluated a new cryoablation catheter, ICEolate, for the targeted ablation of cardiac tissue. METHODS: Performance assessment included calorimetry, freeze zone isothermal distribution characterization and catheter ablation capacity in a submerged, circulating, heat-loaded ex vivo tissue model. A pilot in vivo study was also conducted to assess ablative capacity of the cryocatheter in a fully beating heart. RESULTS: Ex vivo studies demonstrated ice formation at the tip of a cryocatheter within 5 s and a tip temperature of ~-150°C within 10 s. The device repeatedly generated freeze zones of 2 cm × 3 cm in less than 2 min. Tissue model studies revealed the generation of a full thickness (5-10 mm) cryogenic lesion within 1 min with an opposite (transmural) surface temperature of <-60°C under a circulating 37°C heat load. Pilot in vivo studies demonstrated the delivery of an ablative "dose," producing a continuous full thickness transmural linear lesion in <60 s at both atrial and ventricular sites. CONCLUSION: These studies suggest that the supercritical nitrogen cryodevice and ICEolate cryocatheter may provide for rapid, effective, controllable freezing of targeted tissue. The ablative power, speed, and directional freeze characteristics also offer the potential of improved safety via a reduction in procedural time compared to current cryoablation devices. These technological developments may open new avenues for the application of cryo to treat other cardiac arrhythmogenic disorders.

9.
Technol Cancer Res Treat ; 17: 1533033818762207, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29566612

RESUMO

BACKGROUND: Diverse thermal ablative therapies are currently in use for the treatment of cancer. Commonly applied with the intent to cure, these ablative therapies are providing promising success rates similar to and often exceeding "gold standard" approaches. Cancer-curing prospects may be enhanced by deeper understanding of thermal effects on cancer cells and the hosting tissue, including the molecular mechanisms of cancer cell mutations, which enable resistance to therapy. Furthermore, thermal ablative therapies may benefit from recent developments in computer hardware and computation tools for planning, monitoring, visualization, and education. METHODS: Recent discoveries in cancer cell resistance to destruction by apoptosis, autophagy, and necrosis are now providing an understanding of the strategies used by cancer cells to avoid destruction by immunologic surveillance. Further, these discoveries are now providing insight into the success of the diverse types of ablative therapies utilized in the clinical arena today and into how they directly and indirectly overcome many of the cancers' defensive strategies. Additionally, the manner in which minimally invasive thermal therapy is enabled by imaging, which facilitates anatomical features reconstruction, insertion guidance of thermal probes, and strategic placement of thermal sensors, plays a critical role in the delivery of effective ablative treatment. RESULTS: The thermal techniques discussed include radiofrequency, microwave, high-intensity focused ultrasound, laser, and cryosurgery. Also discussed is the development of thermal adjunctive therapies-the combination of drug and thermal treatments-which provide new and more effective combinatorial physical and molecular-based approaches for treating various cancers. Finally, advanced computational and planning tools are also discussed. CONCLUSION: This review lays out the various molecular adaptive mechanisms-the hallmarks of cancer-responsible for therapeutic resistance, on one hand, and how various ablative therapies, including both heating- and freezing-based strategies, overcome many of cancer's defenses, on the other hand, thereby enhancing the potential for curative approaches for various cancers.


Assuntos
Criocirurgia/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Terapia a Laser/métodos , Neoplasias/cirurgia , Ablação por Radiofrequência/métodos , Adaptação Fisiológica/fisiologia , Adaptação Fisiológica/efeitos da radiação , Simulação por Computador , Resistencia a Medicamentos Antineoplásicos/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Humanos
10.
Cancer Control ; 25(1): 1073274818757418, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29480024

RESUMO

Vitamin D3 (VD3) is an effective adjunctive agent, enhancing the destructive effects of freezing in prostate cancer cryoablation studies. We investigated whether dose escalation of VD3 over several weeks, to model the increase in physiological VD3 levels if an oral supplement were prescribed, would be as or more effective than a single treatment 1 to 2 days prior to freezing. PC-3 cells in log phase growth to model aggressive, highly metabolically active prostate cancer were exposed to a gradually increasing dose of VD3 to a final dose of 80 nM over a 4-week period, maintained for 2 weeks at 80 nM, and then exposed to mild sublethal freezing temperatures. Results demonstrate that both acute 24-hour exposure to 80 nM VD3 and dose escalation resulted in enhanced cell death following freezing at -15°C or colder, with no significant differences between the 2 exposure regimes. Apoptotic analysis within the initial 24-hour period postfreeze revealed that VD3 treatment induced both caspase 8- and 9-mediated cell death, most notably in caspase 8 at 8-hour postfreeze. These results indicate that both the intrinsic and extrinsic apoptotic pathways are involved in VD3 sensitization prior to freezing. Additionally, both acute and gradual dose escalation regimes of VD3 exposure increase prostate cancer cell sensitivity to mild freezing. Importantly, this study expands upon previous reports and suggests that the combination of VD3 and freezing may offer an effective treatment for both slow growth and highly aggressive prostate cancers.


Assuntos
Colecalciferol/metabolismo , Criocirurgia/métodos , Neoplasias da Próstata/cirurgia , Apoptose , Morte Celular , Humanos , Masculino , Resultado do Tratamento
11.
Technol Cancer Res Treat ; 16(4): 393-405, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27340260

RESUMO

One of the most lethal carcinomas is pancreatic cancer. As standard treatment using chemotherapy and radiation has shown limited success, thermal regimens (cryotherapy or heat ablation) are emerging as viable alternatives. Although promising, our understanding of pancreatic cancer response to thermal ablation remains limited. In this study, we investigated the thermal responses of 2 pancreatic cancer cell lines in an effort to identify the minimum lethal temperature needed for complete cell death to provide guidance for in vivo applications. PANC-1 and BxPC-3 were frozen (-10°C to -25°C) or heated (45°C-50°C) in single and repeated exposure regimes. Posttreatment survival and recovery were analyzed using alamarBlue assay over a 7-day interval. Modes of cell death were assessed using fluorescence microscopy (calcein acetoxymethyl ester/propidium iodide) and flow cytometry (YO-PRO-1/propidium iodide). Freezing to -10°C resulted in minimal cell death. Exposure to -15°C had a mild impact on PANC-1 survival (93%), whereas BxPC-3 was more severely damaged (33%). Exposure to -20°C caused a significant reduction in viability (PANC-1 = 23%; BxPC-3 = 2%) whereas -25°C yielded complete death. Double freezing exposure was more effective than single exposure. Repeat exposure to -15°C resulted in complete death of BxPC-3, whereas -20°C severely impacted PANC-1 (7%). Heating to 45°C resulted in minimum cell death. Exposure to 48°C yielded a slight increase in cell loss (PANC-1 = 85%; BxPC-3 = 98%). Exposure to 50°C caused a significant decline (PANC-1 = 70%; BxPC-3 = 9%) with continued deterioration to 0%. Double heating to 45°C resulted in similar effects observed in single exposures, whereas repeated 48°C resulted in significant increases in cell death (PANC-1 = 68%; BxPC-3 = 29%). In conclusion, we observed that pancreatic cancer cells were completely destroyed at temperatures <-25°C or >50°C using single thermal exposures. Repeated exposures resulted in increased cell death at less extreme temperatures. Our data suggest that thermal ablation strategies (heat or cryoablation) may represent a viable technique for the treatment of pancreatic cancer.


Assuntos
Neoplasias Pancreáticas/terapia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Criocirurgia , Temperatura Alta , Humanos , Hipertermia Induzida , Necrose , Neoplasias Pancreáticas/patologia
12.
Technol Cancer Res Treat ; 15(4): 609-17, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27161856

RESUMO

BACKGROUND: Cryoablation, an effective means of ablating cancer, is often used in conjunction with adjuvants that target cancer cells in a specific cell cycle stage to increase treatment efficacy. The objective of this study was to investigate the impact of cell cycle stage on cancer freeze response as well as investigate the potential cellular kinetic effect of calcitriol, the active metabolic of vitamin D3, when used as a cryosensitizing adjuvant in order to maximize prostate cancer cell death. METHODS: Cell cycle distribution of PC-3 cells was analyzed via flow cytometry to compare gap 1, synthesis, and gap 2/mitosis phase subpopulations pre- and postfreeze as well as changes elicited by calcitriol pretreatment. Distinct gap 1, synthesis, and gap 2/mitosis phase populations were obtained through fluorescence-activated cell sorting and synthesis phase thymidine synchronization. Posttreatment viability was assessed using alamarBlue and fluorescence microscopy to assess live, apoptotic, and necrotic subpopulations. RESULTS: A small but statistically significant increase in synthesis phase and decrease in gap 2/mitosis phase populations was noted at 6 hours postfreeze in asynchronous samples. Synchronization in synthesis phase yielded an increase in cell death when combined with freezing to both -15°C and -20°C. Calcitriol pretreatment increased the gap 1 phase population by 20% and a synergistic decrease in viability following freezing. However, gap 1-sorted populations combined with calcitriol treatment did not exhibit this synergistic effect. Fluorescence microscopy of fluorescence-activated cell sorting-sorted cells revealed necrosis as the predominant form of cell death in all phases, though apoptosis did play a role. CONCLUSION: Although initial results suggested a potential sensitivity, PC-3 cells exposed to freezing as sorted populations did not reveal significant differences in cell death. As such, the data from this study suggest that there is no difference in cell cycle stage sensitivity to freezing injury.


Assuntos
Androgênios/metabolismo , Ciclo Celular , Criocirurgia , Congelamento , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Colecalciferol/farmacologia , Criocirurgia/métodos , Humanos , Masculino , Neoplasias da Próstata/terapia , Fatores de Tempo
13.
Cryobiology ; 68(2): 215-26, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24508650

RESUMO

Human mesenchymal stem cell (hMSC) research has grown exponentially in the last decade. The ability to process and preserve these cells is vital to their use in stem cell therapy. As such, understanding the complex, molecular-based stress responses associated with biopreservation is necessary to improve outcomes and maintain the unique stem cell properties specific to hMSC. In this study hMSC were exposed to cold storage (4°C) for varying intervals in three different media. The addition of resveratrol or salubrinal was studied to determine if either could improve cell tolerance to cold. A rapid elevation in apoptosis at 1h post-storage as well as increased levels of necrosis through the 24h of recovery was noted in samples. The addition of resveratrol resulted in significant improvements to hMSC survival while the addition of salubrinal revealed a differential response based on the media utilized. Decreases in both apoptosis and necrosis together with decreased cell stress/death signaling protein levels were observed following modulation. Further, ER stress and subsequent unfolded protein response (UPR) stress pathway activation was implicated in response to hMSC hypothermic storage. This study is an important first step in understanding hMSC stress responses to cold exposure and demonstrates the impact of targeted molecular modulation of specific stress pathways on cold tolerance thereby yielding improved outcomes. Continued research is necessary to further elucidate the molecular mechanisms involved in hypothermic-induced hMSC cell death. This study has demonstrated the potential for improving hMSC processing and storage through targeting select cell stress pathways.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Criopreservação/métodos , Crioprotetores/farmacologia , Células-Tronco Mesenquimais/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Western Blotting , Cinamatos/farmacologia , Citometria de Fluxo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Necrose , Osmorregulação , Resveratrol , Estilbenos/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia
14.
Biopreserv Biobank ; 11(1): 33-44, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24845253

RESUMO

Hepatocytes are critical for numerous cell therapies and in vitro investigations. A limiting factor for their use in these applications is the ability to process and preserve them without loss of viability or functionality. Normal rat hepatocytes (NHEPs) and human hepatoma (C3A) cells were stored at either 4°C or 37°C to examine post-processing stress responses. Resveratrol and salubrinal were used during storage to determine how targeted molecular stress pathway modulation would affect cell survival. This study revealed that storage outcome is dependent upon numerous factors including: cell type, storage media, storage length, storage temperature, and chemical modulator. These data implicate a molecular-based stress response that is not universal but is specific to the set of conditions under which cells are stored. Further, these findings allude to the potential for targeted protection or destruction of particular cell types for numerous applications, from diagnostic cell selection to cell-based therapy. Ultimately, this study demonstrates the need for further in-depth molecular investigations into the cellular stress response to bioprocessing and preservation.


Assuntos
Hepatócitos/citologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cinamatos/farmacologia , Temperatura Baixa , Meios de Cultura/farmacologia , Células Hep G2 , Humanos , Microscopia de Fluorescência , Ratos , Resveratrol , Estilbenos/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia , Fatores de Tempo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
15.
Cryobiology ; 63(1): 46-55, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21549109

RESUMO

Human corneal endothelial cells (HCEC) have become increasingly important for a range of eye disease treatment therapies. Accordingly, a more detailed understanding of the processing and preservation associated stresses experienced by corneal cells might contribute to improved therapeutic outcomes. To this end, the unfolded protein response (UPR) pathway was investigated as a potential mediator of corneal cell death in response to hypothermic storage. Once preservation-induced failure had begun in HCECs stored at 4°C, it was noted that necrosis accounted for the majority of cell death but with significant apoptotic involvement, peaking at several hours post-storage (4-8h). Western blot analysis demonstrated changes associated with apoptotic activation (caspase 9, caspase 3, and PARP cleavage). Further, the activation of the UPR pathway was observed through increased and sustained levels of ER folding and chaperone proteins (Bip, PDI, and ERO1-Lα) in samples experiencing significant cell death. Modulation of the UPR pathway using the specific inhibitor, salubrinal, resulted in a 2-fold increase in cell survival in samples experiencing profound cold-induced failure. Furthermore, this increased cell survival was associated with increased membrane integrity, cell attachment, and decreased necrotic cell death populations. Conversely, addition of the UPR inducer, tunicamycin, during cold exposure resulted in a significant decrease in HCEC survival during the recovery period. These data implicate for the first time that this novel cell stress pathway may be activated in HCEC as a result of the complex stresses associated with hypothermic exposure. The data suggest that the targeted control of the UPR pathway during both processing and preservation protocols may improve cell survival and function of HCEC thus improving the clinical utility of these cells as well as whole human corneas.


Assuntos
Células Endoteliais/metabolismo , Endotélio Corneano/metabolismo , Resposta a Proteínas não Dobradas , Apoptose , Morte Celular , Sobrevivência Celular , Células Cultivadas , Endotélio Corneano/citologia , Humanos
16.
Arch Toxicol ; 83(5): 493-502, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19296088

RESUMO

Until now little is known about the functional integrity of human hepatocytes after hypothermic storage. In order to address this limitation, we evaluated several commercially available hypothermic preservation media for their abilities to protect freshly isolated hepatocytes during prolonged cold storage. Human hepatocytes were isolated from non-transplantable/rejected donor livers and resuspended in ice-cold University of Wisconsin solution (UW), HypoThermosol-Base (HTS-Base), or HypoThermosol-FRS (HTS-FRS) with or without the addition of fetal bovine serum. Cells were stored at 4 degrees C for 24-72 h, and evaluated for hepatocyte viability (trypan blue exclusion, or labeling with fluorochromes), cell attachment, and function. The energy status of hepatocytes was evaluated by measurement of intracellular adenosine 5'-triphosphate. To determine whether the test cells expressed metabolic functions of freshly isolated cells, the activities of major phase I (cytochromes P450, FMO) and phase II (UGT, ST) drug-metabolizing enzymes were examined. Although hepatocytes are shown to be satisfactory after 24 h storage in all of the tested solutions, the cell viability, energy status, and xenobiotic metabolism following cold preservation in HTS-FRS was consistently and, in some cases, markedly higher when compared with other systems. The same metabolites for each of the tested substrates were detected in all groups of cells. Moreover, the use of HTS-FRS eliminates the need for serum in preservation solutions. HTS-FRS represents an improved solution compared to HTS-Base and UW for extending the shipping/storage time of human hepatocytes.


Assuntos
Crioprotetores/metabolismo , Hepatócitos/metabolismo , Soluções para Preservação de Órgãos , Manejo de Espécimes/métodos , Adenosina , Alopurinol , Adesão Celular , Sobrevivência Celular , Células Cultivadas , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Glutationa , Hepatócitos/citologia , Hepatócitos/fisiologia , Humanos , Insulina , Rafinose , Soluções
17.
Technol Cancer Res Treat ; 6(2): 81-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17375970

RESUMO

The study of the effectiveness of cryotherapy as a curative treatment for prostate cancer has often relied on the use of either in vitro cell culture monolayers or animal models. While the data gleaned from these studies have been valuable, each model has inherent limitations. In order to bridge the gap between in vitro studies and clinical applications, we developed a 3-dimensional, tissue engineered human prostate cancer model to simulate and assess the effects of cryotherapy and adjunctive treatments on cell viability and activation of cell death pathways throughout the thermally variable freeze zone. Human prostate cancer cells (PC3) were seeded into collagen based matrices and cryolesions were generated using an Oncura SeedNet Gold cryosurgical device with 17-gauge cryoprobes. Analyses revealed widespread necrosis diminishing towards the edge of the freeze zone, and a time-dependent wave of apoptosis starting as early as 1 hr post-thaw at low temperatures (< -40 degrees C) and moving toward the periphery (-20 degrees C) as recovery times reached 12 and 24 hr. Distal to the -10 degrees C isotherm, minimal cell death was apparent (< 20%) over controls. The adjunctive use of chemotherapeutic agents in conjunction with cryosurgery displayed a similar induction of cell death cascades, but with the zone of cryodestruction extending approximately 10 to 15 degrees C further into the freeze zone periphery. By providing an extracellular environment and a matrix to minimize innate variables, the tissue engineered model yielded a more in vivo-like, tumor-like environment supportive of a deeper understanding of the specific biological responses of cancer cells/tumors to cryotherapeutic intervention.


Assuntos
Criocirurgia/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Engenharia Tecidual , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Masculino
18.
Cryobiology ; 49(1): 45-61, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15265716

RESUMO

Recent evidence suggests that the successful treatment of prostate cancer may require adjuvant therapies. Accordingly, a better understanding of the molecular mechanisms involved in current treatments may lead to enhanced efficacy by providing a basis for adjuvant therapies. In this study, we demonstrate that the combination of sub-lethal concentrations of chemotherapeutic agents prior to freezing (-15 degrees C) in a prostate cancer cell (PC-3) model results in enhanced efficacy over either treatment alone. Morphological analysis revealed that necrosis appeared to be the prevalent mode of cell death following adjuvant (in vitro) modeling, yet molecular analysis indicated that freezing and chemotherapy differentially activated apoptotic cascades through modulating opposing members of the Bcl-2 protein family. Freezing results in a time-dependent increase of the antiapoptotic Bcl-2 protein, while chemotherapy results in an increase of the pro-apoptotic Bax protein. Anti-apoptotic Bcl-2 protein levels increase over 3-fold following exposure to freezing. 5-Fluorouracil (5-FU) causes pro-apoptotic Bax levels to increase 2-fold during the drug exposure. The increase in Bax was also apparent following the combination of 5-FU/freezing, while Bcl-2 levels were maintained at or below control levels. This led to a shift in the Bcl-2 to Bax ratio to a pro-death tendency. Other effective cryo/chemo combinations were also found to provide similar effects. The combination of cisplatin/freezing resulted in a 4-fold increase in the ratio of Bax to Bcl-2 when compared to controls, which represented a 2-fold increase over the 5-FU/freezing-combination model. This increase may contribute to the continued reduction in cell number observed during the 13-day recovery period. Additionally, the addition of an apoptotic caspase inhibitor was not able to protect cultures from cell death following combination treatment. In conclusion, the data suggest that both Bcl-2 and Bax may, not only, play an important role in the efficacy of the cryo/chemo combination, but also the balance between the two may determine the role and extent of system destruction.


Assuntos
Antineoplásicos/uso terapêutico , Criocirurgia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Cisplatino/uso terapêutico , Fluoruracila/uso terapêutico , Congelamento , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Necrose , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2
19.
Tissue Eng ; 10(11-12): 1662-71, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15684675

RESUMO

The expanding complexity of biologics banked for therapeutic applications necessitates the development of improved preservation technologies for support of the emerging fields of reparative and regenerative medicine. Currently, a number of media or "solutions" are utilized for the preservation of biologics. Given the diversity of cell systems utilized in the regenerative medicine arena, we hypothesized that the development of unique (individualized) preservation solutions designed to meet the distinct molecular biological requirements of individual systems would provide for enhanced and extended preservation. To evaluate this hypothesis, coronary artery smooth muscle cells (CASMCs), coronary artery endothelial cells (CAECs), hepatic cells (C3A), and skeletal muscle cells (SKMCs) were hypothermically preserved for 2 to 7 days at 4 degrees C in either cell culture medium, University of Wisconsin Solution (UW or ViaSpan), or HypoThermosol (HTS) variants. Cells were then assayed for viability, using the alamarBlue assay as well as calcein-AM, subsequent to their return to normothermic (37 degrees C) temperatures for up to 5 days. CASMC viability was best maintained when preserved in HTS plus Trolox/EDTA, CAEC viability was highest when preserved in HTS plus Trolox, SKMCs stored in HTS plus Trolox/RGD demonstrated enhanced viability, and C3A cells were best preserved in HTS plus FK041. The data suggest that solution compositions that address the differences in cell death mechanisms limiting preservation efficacy can result in targeted improvement matched to specific cell types. These observations support the custom solution hypothesis of cell and tissue preservation.


Assuntos
Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Soluções para Preservação de Órgãos/química , Soluções para Preservação de Órgãos/farmacologia , Engenharia Tecidual/métodos , Preservação de Tecido/métodos , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Humanos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Soluções para Preservação de Órgãos/classificação , Regeneração/efeitos dos fármacos , Regeneração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...