Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(18): 13205-13246, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37712656

RESUMO

Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. We report the design of a series of HTT pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49-50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of HTT mRNA transcripts and protein levels. The starting benzamide core was modified to pyrazine amide and further optimized to give a potent, CNS-penetrant, and orally bioavailable HTT-splicing modulator 27. This compound reduced canonical splicing of the HTT RNA exon 49-50 and demonstrated significant HTT-lowering in both human HD stem cells and mouse BACHD models. Compound 27 is a structurally diverse HTT-splicing modulator that may help understand the mechanism of adverse effects such as peripheral neuropathy associated with branaplam.

2.
J Med Chem ; 64(8): 5018-5036, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33783225

RESUMO

Our group has recently shown that brain-penetrant ataxia telangiectasia-mutated (ATM) kinase inhibitors may have potential as novel therapeutics for the treatment of Huntington's disease (HD). However, the previously described pyranone-thioxanthenes (e.g., 4) failed to afford selectivity over a vacuolar protein sorting 34 (Vps34) kinase, an important kinase involved with autophagy. Given that impaired autophagy has been proposed as a pathogenic mechanism of neurodegenerative diseases such as HD, achieving selectivity over Vps34 became an important objective for our program. Here, we report the successful selectivity optimization of ATM over Vps34 by using X-ray crystal structures of a Vps34-ATM protein chimera where the Vps34 ATP-binding site was mutated to approximate that of an ATM kinase. The morpholino-pyridone and morpholino-pyrimidinone series that resulted as a consequence of this selectivity optimization process have high ATM potency and good oral bioavailability and have lower molecular weight, reduced lipophilicity, higher aqueous solubility, and greater synthetic tractability compared to the pyranone-thioxanthenes.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Piridonas/química , Pirimidinonas/química , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sítios de Ligação , Encéfalo/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Meia-Vida , Humanos , Doença de Huntington/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Morfolinos/química , Piridonas/metabolismo , Piridonas/uso terapêutico , Pirimidinonas/metabolismo , Pirimidinonas/uso terapêutico , Relação Estrutura-Atividade
3.
ACS Med Chem Lett ; 12(3): 380-388, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33738065

RESUMO

Using an iterative structure-activity relationship driven approach, we identified a CNS-penetrant 5-(trifluoromethyl)-1,2,4-oxadiazole (TFMO, 12) with a pharmacokinetic profile suitable for probing class IIa histone deacetylase (HDAC) inhibition in vivo. Given the lack of understanding of endogenous class IIa HDAC substrates, we developed a surrogate readout to measure compound effects in vivo, by exploiting the >100-fold selectivity compound 12 exhibits over class I/IIb HDACs. We achieved adequate brain exposure with compound 12 in mice to estimate a class I/IIb deacetylation EC50, using class I substrate H4K12 acetylation and global acetylation levels as a pharmacodynamic readout. We observed excellent correlation between the compound 12 in vivo pharmacodynamic response and in vitro class I/IIb cellular activity. Applying the same relationship to class IIa HDAC inhibition, we estimated the compound 12 dose required to inhibit class IIa HDAC activity, for use in preclinical models of Huntington's disease.

4.
ACS Med Chem Lett ; 10(8): 1222-1227, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413809

RESUMO

A series of pyrrolidine amino nitrile DPP1 inhibitors have been developed and characterized. The S2 pocket structure-activity relationship for these compounds shows significant gains in potency for DPP1 from interacting further with target residues and a network of water molecules in the binding pocket. Herein we describe the X-ray crystal structures of several of these compounds alongside an analysis of factors influencing the inhibitory potency toward DPP1 of which stabilization of the water network, demonstrated using Grand Canonical Monte Carlo simulations and free energy calculations, is attributed as a main factor.

5.
J Med Chem ; 62(6): 2988-3008, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30840447

RESUMO

Genetic and pharmacological evidence indicates that the reduction of ataxia telangiectasia-mutated (ATM) kinase activity can ameliorate mutant huntingtin (mHTT) toxicity in cellular and animal models of Huntington's disease (HD), suggesting that selective inhibition of ATM could provide a novel clinical intervention to treat HD. Here, we describe the development and characterization of ATM inhibitor molecules to enable in vivo proof-of-concept studies in HD animal models. Starting from previously reported ATM inhibitors, we aimed with few modifications to increase brain exposure by decreasing P-glycoprotein liability while maintaining potency and selectivity. Here, we report brain-penetrant ATM inhibitors that have robust pharmacodynamic (PD) effects consistent with ATM kinase inhibition in the mouse brain and an understandable pharmacokinetic/PD (PK/PD) relationship. Compound 17 engages ATM kinase and shows robust dose-dependent inhibition of X-ray irradiation-induced KAP1 phosphorylation in the mouse brain. Furthermore, compound 17 protects against mHTT (Q73)-induced cytotoxicity in a cortical-striatal cell model of HD.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Doença de Huntington/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Modelos Animais de Doenças , Cães , Humanos , Células Madin Darby de Rim Canino , Camundongos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacocinética , Estudo de Prova de Conceito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...