Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890993

RESUMO

Scanning laser Doppler vibrometry is a widely adopted method to measure the full-field out-of-plane vibrational response of materials in view of detecting defects or estimating stiffness parameters. Recent technological developments have led to performant 3D scanning laser Doppler vibrometers, which give access to both out-of-plane and in-plane vibrational velocity components. In the present study, the effect of using (i) the in-plane component; (ii) the out-of-plane component; and (iii) both the in-plane and out-of-plane components of the recorded vibration velocity on the inverse determination of the stiffness parameters is studied. Input data were gathered from a series of numerical simulations using a finite element model (COMSOL), as well as from broadband experimental measurements by means of a 3D infrared scanning laser Doppler vibrometer. Various materials were studied, including carbon epoxy composite and wood materials. The full-field vibrational velocity response is converted to the frequency-wavenumber domain by means of Fourier transform, from which complex wavenumbers are extracted using the matrix pencil decomposition method. To infer the orthotropic elastic stiffness tensor, an inversion procedure is developed by coupling the semi-analytical finite element (SAFE) as a forward method to the particle swarm optimizer. It is shown that accounting for the in-plane velocity component leads to a more accurate and robust determination of the orthotropic elastic stiffness parameters.


Assuntos
Vibração
2.
Sci Rep ; 12(1): 8012, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568710

RESUMO

Methods allowing for in situ dosimetry and range verification are essential in radiotherapy to reduce the safety margins required to account for uncertainties introduced in the entire treatment workflow. This study suggests a non-invasive dosimetry concept for carbon ion radiotherapy based on phase-change ultrasound contrast agents. Injectable nanodroplets made of a metastable perfluorobutane (PFB) liquid core, stabilized with a crosslinked poly(vinylalcohol) shell, are vaporized at physiological temperature when exposed to carbon ion radiation (C-ions), converting them into echogenic microbubbles. Nanodroplets, embedded in tissue-mimicking phantoms, are exposed at 37 °C to a 312 MeV/u clinical C-ions beam at different doses between 0.1 and 4 Gy. The evaluation of the contrast enhancement from ultrasound imaging of the phantoms, pre- and post-irradiation, reveals a significant radiation-triggered nanodroplets vaporization occurring at the C-ions Bragg peak with sub-millimeter shift reproducibility and dose dependency. The specific response of the nanodroplets to C-ions is further confirmed by varying the phantom position, the beam range, and by performing spread-out Bragg peak irradiation. The nanodroplets' response to C-ions is influenced by their concentration and is dose rate independent. These early findings show the ground-breaking potential of polymer-shelled PFB nanodroplets to enable in vivo carbon ion dosimetry and range verification.


Assuntos
Carbono , Polímeros , Íons , Reprodutibilidade dos Testes , Ultrassonografia
3.
Ultrasound Med Biol ; 48(1): 149-156, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34629191

RESUMO

The potential of proton therapy to improve the conformity of the delivered dose to the tumor volume is currently limited by range uncertainties. Injectable superheated nanodroplets have recently been proposed for ultrasound-based in vivo range verification, as these vaporize into echogenic microbubbles on proton irradiation. In previous studies, offline ultrasound images of phantoms with dispersed nanodroplets were acquired after irradiation, relating the induced vaporization profiles to the proton range. However, the aforementioned method did not enable the counting of individual vaporization events, and offline imaging cannot provide real-time feedback. In this study, we overcame these limitations using high-frame-rate ultrasound imaging with a linear array during proton irradiation of phantoms with dispersed perfluorobutane nanodroplets at 37°C and 50°C. Differential image analysis of subsequent frames allowed us to count individual vaporization events and to localize them with a resolution beyond the ultrasound diffraction limit, enabling spatial and temporal quantification of the interaction between ionizing radiation and nanodroplets. Vaporization maps were found to accurately correlate with the stopping distribution of protons (at 50°C) or secondary particles (at both temperatures). Furthermore, a linear relationship between the vaporization count and the number of incoming protons was observed. These results indicate the potential of real-time high-frame-rate contrast-enhanced ultrasound imaging for proton range verification and dosimetry.


Assuntos
Microbolhas , Prótons , Imagens de Fantasmas , Ultrassonografia , Volatilização
4.
Phys Med ; 89: 232-242, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34425514

RESUMO

PURPOSE: We investigate the vaporization of phase-change ultrasound contrast agents using photon radiation for dosimetry perspectives in radiotherapy. METHODS: We studied superheated perfluorobutane nanodroplets with a crosslinked poly(vinylalcohol) shell. The nanodroplets' physico-chemical properties, and their acoustic transition have been assessed firstly. Then, poly(vinylalcohol)-perfluorobutane nanodroplets were dispersed in poly(acrylamide) hydrogel phantoms and exposed to a photon beam. We addressed the effect of several parameters influencing the nanodroplets radiation sensitivity (energy/delivered dose/dose rate/temperature). The nanodroplets-vaporization post-photon exposure was evaluated using ultrasound imaging at a low mechanical index. RESULTS: Poly(vinylalcohol)-perfluorobutane nanodroplets show a good colloidal stability over four weeks and remain highly stable at temperatures up to 78 °C. Nanodroplets acoustically-triggered phase transition leads to microbubbles with diameters <10 µm and an activation threshold of mechanical index = 0.4, at 7.5 MHz. A small number of vaporization events occur post-photon exposure (6MV/15MV), at doses between 2 and 10 Gy, leading to ultrasound contrast increase up to 60% at RT. The nanodroplets become efficiently sensitive to photons when heated to a temperature of 65 °C (while remaining below the superheat limit temperature) during irradiation. CONCLUSIONS: Nanodroplets' core is linked to the degree of superheat in the metastable state and plays a critical role in determining nanodroplet' stability and sensitivity to ionizing radiation, requiring higher or lower linear energy transfer vaporization thresholds. While poly(vinylalcohol)-perfluorobutane nanodroplets could be slightly activated by photons at ambient conditions, a good balance between the degree of superheat and stability will aim at optimizing the design of nanodroplets to reach high sensitivity to photons at physiological conditions.


Assuntos
Nanopartículas , Fótons , Meios de Contraste , Microbolhas , Ultrassonografia , Volatilização
5.
Ultrasonics ; 116: 106482, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102523

RESUMO

A new extension of the shear deformation theory to fifth order in order to calculate the spectrum of Lamb waves in orthotropic media over a wide frequency range is developed and analyzed. The aspiration of the proposed method is to create an alternative framework to exhaustive 3D elasticity based solutions by increasing computational efficiency without losing accuracy, nor robustness. A new computational framework is introduced which allows to estimate the dispersion curves for the first nine symmetric and nine anti-symmetric Lamb modes. Analytically calculated dispersion curves using 5-SDT for different propagation directions and polar plots for selected frequency of different materials are compared with the results from both the semi analytical finite element method, and lower order shear deformation theories. Careful analysis for individual laminae and for symmetric composite laminates exhibits a good agreement between the new higher order plate theory and the semi analytical finite element method over an extensive frequency range. In addition, attenuation plots show that the proposed method can also be used for visco-elastic materials (or highly damped materials). The advantage of the new higher order plate theory and its numerical implementation is that it is much more computationally efficient compared to comprehensive methods as Lamb wave polar plots of composite plates as function of incidence angle, polar angle and frequency can be calculated in less than a second on a standard laptop. Consequently, the use of this framework in inversion routines opens up the possibility of quasi real-time Structural Health Monitoring for visco-elastic composites covering a sufficiently wide frequency range.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33798079

RESUMO

In the context of designing a next-generation ultrasonic polar scan (UPS) measurement system for viscoelastic material characterization, a novel approach is proposed, which draws on a set of cylindrically focused emitters in conjunction with a circular phased array (C-PA) receiver in order to create a portable measurement system while improving the data quality and ease the data interpretation. To explore the potential of the new approach and determine its optimal design parameters, a 3-D analytical model is presented to numerically simulate UPS experiments with the proposed system. Furthermore, a postprocessing procedure is worked out to treat the acquired raw data with the aim to deal with the integrating effect of finite size transducers and directly reconstruct the angle-dependent plane wave reflection coefficients of the sample under study. As the accuracy of the reconstruction heavily depends on various design parameters, a parameter study focusing on the influence of three main experimental parameters is performed to guide the optimal design. For each of these parameter studies, the UPS simulation results have been inverted, and the errors on the estimated C-tensor parameters have been deduced. First, it is shown that, for a given frequency, the radius of the C-PA must be large enough to capture both the specular and nonspecular reflected field, which is crucial to assure a correct reconstruction of the plane wave characteristics and find proper estimates of the C-tensor parameters. Second, the impact of the emitter and receiver lengths on the quality of the reconstruction and the C-tensor parameters has been investigated, yielding superior results upon increasing either of them. Finally, a dedicated study of the pitch of the C-PA elements and the angular range of the cylindrically focused emitters shows that aliasing effects disturb the results if the pitch is too large. However, this effect can somewhat be mitigated by employing multiple emitters with a restricted angular range. Using the knowledge of the abovementioned parameter studies, a simulated UPS experiment using a proper set of design parameters is performed for a cross-ply carbon epoxy laminate. The postprocessed reconstruction based on these data shows an excellent agreement with the theoretical plane wave results.

7.
Ultrasound Med Biol ; 47(7): 1857-1867, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33810887

RESUMO

Collateral damage to healthy surrounding tissue during conventional radiotherapy increases when deviations from the treatment plan occur. Ultrasound contrast agents (UCAs) are a possible candidate for radiation dose monitoring. This study investigated the size distribution and acoustic response of two commercial formulations, SonoVue/Lumason and Definity/Luminity, as a function of dose on clinical megavoltage photon beam exposure (24 Gy). SonoVue samples exhibited a decrease in concentration of bubbles smaller than 7 µm, together with an increase in acoustic attenuation and a decrease in acoustic scattering. Definity samples did not exhibit a significant response to radiation, suggesting that the effect of megavoltage photons depends on the UCA formulation. For SonoVue, the influence of the megavoltage photon beam was especially apparent at the second harmonic frequency, and can be captured using pulse inversion and amplitude modulation (3.5-dB decrease for the maximum dose), which could eventually be used for dosimetry in a well-controlled environment.


Assuntos
Meios de Contraste/efeitos da radiação , Fluorocarbonos/efeitos da radiação , Fosfolipídeos/efeitos da radiação , Radioterapia/métodos , Hexafluoreto de Enxofre/efeitos da radiação , Acústica , Dosagem Radioterapêutica
8.
Med Phys ; 48(4): 1983-1995, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33587754

RESUMO

PURPOSE: Despite the physical benefits of protons over conventional photon radiation in cancer treatment, range uncertainties impede the ability to harness the full potential of proton therapy. While monitoring the proton range in vivo could reduce the currently adopted safety margins, a routinely applicable range verification technique is still lacking. Recently, phase-change nanodroplets were proposed for proton range verification, demonstrating a reproducible relationship between the proton range and generated ultrasound contrast after radiation-induced vaporization at 25°C. In this study, previous findings are extended with proton irradiations at different temperatures, including the physiological temperature of 37°C, for a novel nanodroplet formulation. Moreover, the potential to modulate the linear energy transfer (LET) threshold for vaporization by varying the degree of superheat is investigated, where the aim is to demonstrate vaporization of nanodroplets directly by primary protons. METHODS: Perfluorobutane nanodroplets with a shell made of polyvinyl alcohol (PVA-PFB) or 10,12-pentacosadyinoic acid (PCDA-PFB) were dispersed in polyacrylamide hydrogels and irradiated with 62 MeV passively scattered protons at temperatures of 37°C and 50°C. Nanodroplet transition into echogenic microbubbles was assessed using ultrasound imaging (gray value and attenuation analysis) and optical images. The proton range was measured independently and compared to the generated contrast. RESULTS: Nanodroplet design proved crucial to ensure thermal stability, as PVA-shelled nanodroplets dramatically outperformed their PCDA-shelled counterpart. At body temperature, a uniform radiation response proximal to the Bragg peak is attributed to nuclear reaction products interacting with PVA-PFB nanodroplets, with the 50% drop in ultrasound contrast being 0.17 mm ± 0.20 mm (mean ± standard deviation) in front of the proton range. Also at 50°C, highly reproducible ultrasound contrast profiles were obtained with shifts of -0.74 mm ± 0.09 mm (gray value analysis), -0.86 mm ± 0.04 mm (attenuation analysis) and -0.64 mm ± 0.29 mm (optical analysis). Moreover, a strong contrast enhancement was observed near the Bragg peak, suggesting that nanodroplets were sensitive to primary protons. CONCLUSIONS: By varying the degree of superheat of the nanodroplets' core, one can modulate the intensity of the generated ultrasound contrast. Moreover, a submillimeter reproducible relationship between the ultrasound contrast and the proton range was obtained, either indirectly via the visualization of secondary reaction products or directly through the detection of primary protons, depending on the degree of superheat. The potential of PVA-PFB nanodroplets for in vivo proton range verification was confirmed by observing a reproducible radiation response at physiological temperature, and further studies aim to assess the nanodroplets' performance in a physiological environment. Ultimately, cost-effective online or offline ultrasound imaging of radiation-induced nanodroplet vaporization could facilitate the reduction of safety margins in treatment planning and enable adaptive proton therapy.


Assuntos
Terapia com Prótons , Prótons , Meios de Contraste , Microbolhas , Ultrassonografia
9.
Phys Med Biol ; 65(6): 065013, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32045902

RESUMO

Technologies enabling in vivo range verification during proton therapy are actively sought as a means to reduce the clinical safety margins currently adopted to avoid tumor underdosage. In this contribution, we applied the semi-empirical theory of radiation-induced vaporization of superheated liquids to coated nanodroplets. Nanodroplets are injectable phase-change contrast agents that can vaporize into highly echogenic microbubbles to provide contrast in ultrasound images. We exposed nanodroplet dispersions in aqueous phantoms to monoenergetic proton beams of varying energies and doses. Ultrasound imaging of the phantoms revealed that radiation-induced droplet vaporization occurred in regions proximal to the proton Bragg peak. A statistically significant increase in contrast was observed in irradiated regions for doses as low as 2 Gy and found to be proportional to the proton fluence. The absence of enhanced response in the vicinity of the Bragg peak, combined with theoretical considerations, suggest that droplet vaporization is induced by high linear energy transfer (LET) recoil ions produced by nuclear reactions with incoming protons. Vaporization profiles were compared to non-elastic cross sections and LET characteristics of oxygen recoils. Shifts between the ultrasound image contrast drop and the expected proton range showed a sub-millimeter reproducibility. These early findings confirm the potential of superheated nanodroplets as a novel tool for proton range verification.


Assuntos
Nanotecnologia , Terapia com Prótons , Radioterapia Guiada por Imagem/métodos , Estudos de Viabilidade , Humanos , Transferência Linear de Energia , Método de Monte Carlo , Imagens de Fantasmas , Reprodutibilidade dos Testes , Ultrassonografia
10.
IEEE Trans Ultrason Ferroelectr Freq Control ; 66(12): 1874-1886, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31369372

RESUMO

Numerical finite-element (FE) simulations and postprocessing analysis methods are presented for ultrasonic polar scan (UPS) measurements involving a circular phased array (C-PA) to determine the plane-wave reflection coefficient of plates. Apodization weights for the C-PA elements are determined to assure the generation of a quasi-plane wave upon excitation at the plate surface and to mitigate bounded beam effects on the assessed reflection coefficient. In addition, postprocessing of the reflection signals is performed via the synthetic plane-wave technique to further filter out any bounded beam effects. Reflection coefficients are presented for three cases namely, an aluminum, a unidirectional carbon epoxy, and a cross-ply carbon epoxy plate. For all three cases, comparison with the analytical plane-wave theory shows excellent agreement with the reflection coefficients obtained by the C-PA and the additional postprocessing steps for both the pulsed and harmonic signals. It is also shown that the agreement becomes considerably worse if the nonspecular reflection field is disregarded in the postprocessing treatment, thus enforcing the need to capture the full reflected field via the PA whenever plane-wave reflection coefficients are needed.

11.
Langmuir ; 35(31): 10116-10127, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31042396

RESUMO

Phase change contrast agents for ultrasound (US) imaging consist of nanodroplets (NDs) with a perfluorocarbon (PFC) liquid core stabilized with a lipid or a polymer shell. Liquid ↔ gas transition, occurring in the core, can be triggered by US to produce acoustically active microbubbles (MBs) in a process named acoustic droplet vaporization (ADV). MB shells containing polymerized diacetylene moiety were considered as a good trade off between the lipid MBs, showing optimal attenuation, and the polymeric ones, displaying enhanced stability. This work reports on novel perfluoropentane and perfluorobutane NDs stabilized with a monolayer of an amphiphilic fatty acid, i.e. 10,12-pentacosadiynoic acid (PCDA), cured with ultraviolet (UV) irradiation. The photopolymerization of the diacetylene groups, evidenced by the appearance of a blue color due to the conjugation of ene-yne sequences, exhibits a chromatic transition from the nonfluorescent blue color to a fluorescent red color when the NDs are heated or the pH of the suspension is basic. An estimate of the molecular weights reached by the polymerized PCDA in the shell, poly(PCDA), has been obtained using gel permeation chromatography and MALDI-TOF mass spectrometry. The poly(PCDA)/PFC NDs show good biocompatibility with fibroblast cells. ADV efficiency and acoustic properties before and after the transition were tested using a 1 MHz probe, revealing a resonance frequency between 1 and 2 MHz similar to other lipidic MBs. The surface of PCDA shelled NDs can be easily modified without influencing the stability and the acoustic performances of droplets. As a proof of concept we report on the conjugation of cyclic RGD and PEG chains of the particles to support targeting ability toward endothelial cells.

12.
Ultrasonics ; 88: 43-50, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29573587

RESUMO

In the process of wood grading with the focus on detecting wood knots, nondestructive testing methods based on sound transmission can assist the traditional characterization methods to achieve a higher efficiency and better results. In this paper, we use two independent methods based on resonance and sound speed measurements to evaluate the elastic modulus of wood beams containing different knots. The results show that the method based on sound speed measurements offers a fast procedure to evaluate whether the knot is in the middle of the cross-section of the beam or not. In this case, both measuring methods are reliable in determining the knot's characteristics. In the off-center case, the resonance method performs better to quantify the size of the knots.

13.
Ultrasonics ; 82: 246-251, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917983

RESUMO

The temperature dependence of soft tissue acoustic properties is relevant for monitoring tissue hyperthermia. In the current work, the propagation speed and attenuation of healthy porcine left ventricular myocardium (N=5) was investigated in a frequency range relevant for clinical diagnostic imaging, i.e. 2.5-13.0MHz. Each tissue sample was held in a water bath at a temperature T=25°C, heated to 45°C, and allowed to cool back down to 25°C. Due to initial tissue swelling, the data for decreasing temperatures was considered more reliable. In this case, the slope of the phase velocity versus temperature relation was measured to be 1.10±0.04m/s/°C, and the slope of the attenuation was -0.11±0.04dB/cm/°C at 10MHz, or -0.0041±0.0015dB/cm/MHz1.4336/°C as a function of frequency.


Assuntos
Acústica , Miocárdio , Temperatura , Animais , Modelos Biológicos , Suínos
14.
Ultrasonics ; 82: 11-18, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28734189

RESUMO

Our study aims at the creation of a numerical toolbox that describes wave propagation in samples containing internal contacts (e.g. cracks, delaminations, debondings, imperfect intergranular joints) of known geometry with postulated contact interaction laws including friction. The code consists of two entities: the contact model and the solid mechanics module. Part I of the paper concerns the modeling of internal contacts (called cracks for brevity), while part II is related to the integration of the developed contact model into a solid mechanics module that allows the description of wave propagation processes. The contact model is used to produce normal and tangential load-displacement relationships, which in turn are used by the solid mechanics module as boundary conditions at the internal contacts. Due to friction, the tangential reaction curve is hysteretic and memory-dependent. In addition, it depends on the normal reaction curve. An essential feature of the proposed contact model is that it takes into account the roughness of the contact faces. On one hand, accounting for roughness makes the contact model more complicated since it gives rise to a partial slip regime when some parts on the contact area experience slip and some do not. On the other hand, as we will show, the concept of contact surfaces covered by asperities receding under load makes it possible to formulate a consistent contact model that provides nonlinear load-displacement relationships for any value of the drive displacements and their histories. This is a strong advantage, since this way, the displacement-driven model allows for a simple explicit procedure of data exchange with the solid mechanics module, while more traditional flat-surface contacts driven by loads generate a complex iterative procedure. More specifically, the proposed contact model is based on the previously developed method of memory diagrams that allows one to automatically obtain memory-dependent solutions to frictional contact problems in the particular case of partial slip. Here we extend the solution onto cases of total sliding and contact loss which is possible while using the displacement-driven formulation. The method requires the knowledge of the normal contact response obtained in our case as a result of statistical consideration of roughness of contact faces.

15.
Ultrasonics ; 82: 19-30, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28734190

RESUMO

Our study aims at the creation of a numerical toolbox that describes wave propagation in samples containing internal contacts (e.g. cracks, delaminations, debondings, imperfect intergranular joints) of known geometry with postulated contact interaction laws including friction. The code consists of two entities: the contact model and the solid mechanics module. Part I of the paper concerns an in-depth description of a constitutive model for realistic contacts or cracks that takes into account the roughness of the contact faces and the associated effects of friction and hysteresis. In the crack model, three different contact states can be recognized: contact loss, total sliding and partial slip. Normal (clapping) interactions between the crack faces are implemented using a quadratic stress-displacement relation, whereas tangential (friction) interactions were introduced using the Coulomb friction law for the total sliding case, and the Method of Memory Diagrams (MMD) in case of partial slip. In the present part of the paper, we integrate the developed crack model into finite element software in order to simulate elastic wave propagation in a solid material containing internal contacts or cracks. We therefore implemented the comprehensive crack model in MATLAB® and introduced it in the Structural Mechanics Module of COMSOL Multiphysics®. The potential of the approach for ultrasound based inspection of solids with cracks showing acoustic nonlinearity is demonstrated by means of an example of shear wave propagation in an aluminum sample containing a single crack with rough surfaces and friction.

16.
Ultrasonics ; 84: 201-209, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29156300

RESUMO

Estimation of the attenuation is important in medical ultrasound not only for correct time-gain compensation but also for tissue characterization. In this paper, the feasibility of a new method for attenuation estimation is tested. The proposed method estimates the attenuation by repeatedly solving the forward wave propagation problem and matching the simulated signals to the measured ones. This approach allows avoiding common assumptions made by other methodologies and potentially allows to account and correct for other acoustic effects that may bias the attenuation estimate. The performance of the method was validated on simulated data and on data recorded in tissue mimicking phantoms with known attenuation properties, and was compared to the spectral-shift and spectral-difference methods. Simulation results showed the different methods to have good accuracy when noise-free signals were considered (the average relative error of the attenuation estimation did not exceed 15%). However, the accuracy of the conventional methods decreased rapidly in the presence of measurement noise and varying scatterer concentration, while the relative error of the proposed method remained below 15%. Furthermore, the proposed method outperformed conventional attenuation estimators in the experimental phantom study, where its average error was 8%, while the average error of the spectral-shift and spectral-difference methods was 26% and 32%, respectively. In summary, these findings demonstrate the feasibility of the proposed approach and motivate us to refine the method for solving more general problems.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Ultrassonografia/métodos , Acústica , Estudos de Viabilidade , Imagens de Fantasmas
17.
Med Phys ; 44(6): 2532-2543, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370086

RESUMO

PURPOSE: The aim of this work was to model the dose dependence of the darkening of GafChromic™ EBT3 films by combining the optical properties of the polydiacetylene polymer phases, and a modified version of the single-hit model, which will take the stick-like shape of the monomer microcrystals into account. Second, a comparison is made between the quantification of the film darkening by flatbed scanning and by UV-vis absorption spectroscopy. METHOD: GafChromicTM EBT3 films were irradiated with a 6 MV photon beam at dose levels between 0 and 50 Gy. The radiation-induced darkening of the films is quantified by a flatbed scanner, and by UV-vis absorption spectroscopy in the wavelength range of 220-750 nm. From the UV-vis absorption spectra, the contribution of each polymer phase to the absorbance was deduced. Next, the dose dependence of the polymer content is described by a modified single-hit model where the size distribution of polymerizable centers is approximated by way of the size distribution of the monomer microcrystals in the film. RESULTS: The absorption properties of the film can be accurately quantified by UV-vis spectroscopy for dose levels between 0 and 10 Gy. Over 10 Gy, the absorption spectrum saturates due to the limited sensitivity of the spectrometer. The modified single-hit model was successful in describing the increasing polymer concentration with radiation dose, using a log-normal distribution for the length of the stick-like monomer microcrystals. The dose dependence of the polymer content, deduced from the UV-vis absorption spectrum, differs from that of the flatbed scanning method and is more sensitive to changes in dose. CONCLUSION: The dose dependence of the polymer concentration can be modeled by taking into account the distribution of active centers using the microstructure of the active layer for dose levels between 0 and 10 Gy. The dissimilar dose dependence of the polymer concentration and the absorbance must be accounted for when modeling darkening from the kinetics of the photopolymerization reaction.


Assuntos
Dosimetria Fotográfica , Análise Espectral , Doses de Radiação
18.
J Acoust Soc Am ; 141(3): EL262, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28372140

RESUMO

An extension to the angular spectrum approach for modelling pressure fields of a cylindrically curved array transducer is described in this paper. The proposed technique is based on representing the curved transducer surface as a set of planar elements whose contributions are combined at a selected intermediate plane from which the field is further propagated using the conventional angular spectrum approach. The accuracy of the proposed technique is validated through comparison with Field II simulations.

19.
J Agric Food Chem ; 64(17): 3405-16, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27066807

RESUMO

Differential scanning calorimetry and real-time X-ray diffraction using synchrotron radiation were used to elucidate isothermal cocoa butter crystallization at 17 and 20 °C in the absence and presence of different limonene concentrations. At 17 °C, a three-step crystallization process was visible for pure cocoa butter, whereby first an unknown structure with long spacings between a 2L and 3L structure was formed that rapidly transformed into the more stable α structure, which in turn was converted into more stable ß' crystals. At 20 °C, an α-mediated ß' crystallization was observed. The addition of limonene resulted in a reduction of the amount of unstable crystals and an acceleration of polymorphic transitions. At 17 °C, the crystallization process was accelerated due to the acceleration of the formation of more stable polymorphic forms, whereas there were insufficient α crystals for an α-mediated ß' nucleation at 20 °C, resulting in a slower crystallization process.


Assuntos
Cicloexenos/química , Gorduras na Dieta , Terpenos/química , Varredura Diferencial de Calorimetria , Cristalização , Limoneno , Temperatura , Difração de Raios X
20.
Ultrasonics ; 68: 71-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26921559

RESUMO

Friction stir welding (FSW) is a promising technology for the joining of aluminum alloys and other metallic admixtures that are hard to weld by conventional fusion welding. Although FSW generally provides better fatigue properties than traditional fusion welding methods, fatigue properties are still significantly lower than for the base material. Apart from voids, kissing bonds for instance, in the form of closed cracks propagating along the interface of the stirred and heat affected zone, are inherent features of the weld and can be considered as one of the main causes of a reduced fatigue life of FSW in comparison to the base material. The main problem with kissing bond defects in FSW, is that they currently are very difficult to detect using existing NDT methods. Besides, in most cases, the defects are not directly accessible from the exposed surface. Therefore, new techniques capable of detecting small kissing bond flaws need to be introduced. In the present paper, a novel and practical approach is introduced based on a nonlinear, single-sided, ultrasonic technique. The proposed inspection technique uses two single element transducers, with the first transducer transmitting an ultrasonic signal that focuses the ultrasonic waves at the bottom side of the sample where cracks are most likely to occur. The large amount of energy at the focus activates the kissing bond, resulting in the generation of nonlinear features in the wave propagation. These nonlinear features are then captured by the second transducer operating in pitch-catch mode, and are analyzed, using pulse inversion, to reveal the presence of a defect. The performance of the proposed nonlinear, pitch-catch technique, is first illustrated using a numerical study of an aluminum sample containing simple, vertically oriented, incipient cracks. Later, the proposed technique is also applied experimentally on a real-life friction stir welded butt joint containing a kissing bond flaw.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...