Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 27(5): 886-900, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38539015

RESUMO

Microglia are central players in Alzheimer's disease pathology but analyzing microglial states in human brain samples is challenging due to genetic diversity, postmortem delay and admixture of pathologies. To circumvent these issues, here we generated 138,577 single-cell expression profiles of human stem cell-derived microglia xenotransplanted in the brain of the AppNL-G-F model of amyloid pathology and wild-type controls. Xenografted human microglia adopt a disease-associated profile similar to that seen in mouse microglia, but display a more pronounced human leukocyte antigen or HLA state, likely related to antigen presentation in response to amyloid plaques. The human microglial response also involves a pro-inflammatory cytokine/chemokine cytokine response microglia or CRM response to oligomeric Aß oligomers. Genetic deletion of TREM2 or APOE as well as APOE polymorphisms and TREM2R47H expression in the transplanted microglia modulate these responses differentially. The expression of other Alzheimer's disease risk genes is differentially regulated across the distinct cell states elicited in response to amyloid pathology. Thus, we have identified multiple transcriptomic cell states adopted by human microglia in a multipronged response to Alzheimer's disease-related pathology, which should be taken into account in translational studies.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Microglia , Receptores Imunológicos , Transcriptoma , Humanos , Microglia/metabolismo , Microglia/patologia , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Animais , Peptídeos beta-Amiloides/metabolismo , Camundongos , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Camundongos Transgênicos , Xenoenxertos , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia
2.
Aging Cell ; 23(5): e14120, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403918

RESUMO

Long considered to fluctuate between pro- and anti-inflammatory states, it has now become evident that microglia occupy a variegated phenotypic landscape with relevance to aging and neurodegeneration. However, whether specific microglial subsets converge in or contribute to both processes that eventually affect brain function is less clear. To investigate this, we analyzed microglial heterogeneity in a tauopathy mouse model (K18-seeded P301L) and an accelerated aging model (Senescence-Accelerated Mouse-Prone 8, SAMP8) using cellular indexing of transcriptomes and epitopes by sequencing. We found that widespread tau pathology in K18-seeded P301L mice caused a significant change in the number and morphology of microglia, but only a mild overrepresentation of disease-associated microglia. At the cell population-level, we observed a marked upregulation of the calprotectin-encoding genes S100a8 and S100a9. In 9-month-old SAMP8 mice, we identified a unique microglial subpopulation that showed partial similarity with the disease-associated microglia phenotype and was additionally characterized by a high expression of the same calprotectin gene set. Immunostaining for S100A8 revealed that this population was enriched in the hippocampus, correlating with the cognitive impairment observed in this model. However, incomplete colocalization between their residence and markers of neuronal loss suggests regional specificity. Importantly, S100A8-positive microglia were also retrieved in brain biopsies of human AD and tauopathy patients as well as in a biopsy of an aged individual without reported pathology. Thus, the emergence of S100A8-positive microglia portrays a conspicuous commonality between accelerated aging and tauopathy progression, which may have relevance for ensuing brain dysfunction.


Assuntos
Envelhecimento , Encéfalo , Calgranulina A , Microglia , Animais , Microglia/metabolismo , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Calgranulina A/metabolismo , Calgranulina A/genética , Envelhecimento/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Modelos Animais de Doenças , Tauopatias/metabolismo , Tauopatias/patologia , Masculino , Camundongos Transgênicos
3.
Stem Cell Rev Rep ; 17(5): 1855-1873, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33982246

RESUMO

Astrocytes, the main supportive cell type of the brain, show functional impairments upon ageing and in a broad spectrum of neurological disorders. Limited access to human astroglia for pre-clinical studies has been a major bottleneck delaying our understanding of their role in brain health and disease. We demonstrate here that functionally mature human astrocytes can be generated by SOX9 overexpression for 6 days in pluripotent stem cell (PSC)-derived neural progenitor cells. Inducible (i)SOX9-astrocytes display functional properties comparable to primary human astrocytes comprising glutamate uptake, induced calcium responses and cytokine/growth factor secretion. Importantly, electrophysiological properties of iNGN2-neurons co-cultured with iSOX9-astrocytes are indistinguishable from gold-standard murine primary cultures. The high yield, fast timing and the possibility to cryopreserve iSOX9-astrocytes without losing functional properties makes them suitable for scaled-up production for high-throughput analyses. Our findings represent a step forward to an all-human iPSC-derived neural model for drug development in neuroscience and towards the reduction of animal use in biomedical research.


Assuntos
Astrócitos , Células-Tronco Neurais , Animais , Astrócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/citologia , Fatores de Transcrição SOX9/metabolismo
4.
Nat Neurosci ; 22(12): 2111-2116, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659342

RESUMO

Although genetics highlights the role of microglia in Alzheimer's disease, one-third of putative Alzheimer's disease risk genes lack adequate mouse orthologs. Here we successfully engraft human microglia derived from embryonic stem cells in the mouse brain. The cells recapitulate transcriptionally human primary microglia ex vivo and show expression of human-specific Alzheimer's disease risk genes. Oligomeric amyloid-ß induces a divergent response in human versus mouse microglia. This model can be used to study the role of microglia in neurological diseases.


Assuntos
Doença de Alzheimer/genética , Células-Tronco Embrionárias/citologia , Microglia/metabolismo , Microglia/transplante , Transcriptoma , Peptídeos beta-Amiloides/farmacologia , Animais , Diferenciação Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos
5.
Alzheimers Dement ; 15(3): 453-464, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30442540

RESUMO

INTRODUCTION: Murine microglia expressing the Alzheimer's disease-linked TREM2R47H mutation display variable decrease in phagocytosis, while impaired phagocytosis is reported following loss of TREM2. However, no data exist on TREM2+/R47H human microglia. Therefore, we created human pluripotent stem cell (hPSC) monocytes and transdifferentiated microglia-like cells (tMGs) to examine the effect of the TREM2+/R47H mutation and loss of TREM2 on phagocytosis. METHODS: We generated isogenic TREM2+/R47H, TREM2+/-, and TREM2-/- hPSCs using CRISPR/Cas9. Following differentiation to monocytes and tMGs, we studied the uptake of Escherichia coli fragments and analyzed amyloid plaque clearance from cryosections of APP/PS1+/- mouse brains. RESULTS: We demonstrated that tMGs resemble cultured human microglia. TREM2+/- and TREM2-/- hPSC monocytes and tMGs phagocytosed significantly less E. coli fragments and cleared less amyloid plaques than wild-type hPSC progeny, with no difference for TREM2+/R47H progeny. DISCUSSION: In vitro phagocytosis of hPSC monocytes and tMGs was not affected by the TREM2+/R47H mutation but was significantly impaired in TREM2+/- and TREM2-/- progeny.


Assuntos
Glicoproteínas de Membrana/deficiência , Microglia/metabolismo , Monócitos/metabolismo , Placa Amiloide/metabolismo , Receptores Imunológicos/deficiência , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo , Sistemas CRISPR-Cas , Células Cultivadas , Escherichia coli , Glicoproteínas de Membrana/genética , Camundongos Transgênicos , Fagocitose , Células-Tronco Pluripotentes , Presenilina-1/genética , Presenilina-1/metabolismo , Receptores Imunológicos/genética
6.
Cell Immunol ; 330: 60-67, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29433896

RESUMO

Over the past decades, the importance of the immune system in a broad scope of pathologies, has drawn attention towards tissue-resident macrophages, such as microglia in the brain. To enable the study of for instance microglia, it is crucial to recreate in vitro (and in vivo) assays. However, very fast loss of tissue-specific features of primary tissue resident macrophages, including microglia, upon in vitro culture has complicated such studies. Moreover, limited knowledge of macrophage developmental pathways and the role of local 'niche factors', has hampered the generation of tissue-resident macrophages from pluripotent stem cells (PSC). Recent data on the ontogeny of tissue-resident macrophages, combined with bulk and single cell RNAseq studies have identified the distinct origins and gene profile of microglia compared to other myeloid cells. As a result, over the past years, protocols have been published to create hPSC-derived microglia-'like' cells, as these cells are considered potential new therapeutic targets for therapies to treat neurodegenerative diseases. In this review we will provide an overview of different approaches taken to generate human microglia in vitro, taking into account their origin, and resemblance to their in vivo counterpart. Finally, we will discuss cell-extrinsic (culture conditions) and intrinsic factors (transcriptional machinery and epigenetics) that we believe can improve future differentiation protocols of tissue-resident macrophages from stem cells.


Assuntos
Encéfalo/citologia , Macrófagos/citologia , Microglia/citologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Humanos , Macrófagos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...