Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Engl J Med ; 376(4): 330-341, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-25830322

RESUMO

BACKGROUND: The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. METHODS: We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. RESULTS: The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. CONCLUSIONS: This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses. (Funded by the National Institutes of Health and others; rVSV∆G-ZEBOV-GP ClinicalTrials.gov numbers, NCT02269423 and NCT02280408 .).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Adulto , Anticorpos Antivirais/sangue , Método Duplo-Cego , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Feminino , Doença pelo Vírus Ebola/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Soroconversão , Vacinas Atenuadas/imunologia , Vírus da Estomatite Vesicular Indiana , Proteínas do Envelope Viral/isolamento & purificação , Viremia
2.
Virology ; 486: 88-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26410240

RESUMO

We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NSS gene, but not the N, GN or NSM genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NSS, confirming that expression of NSS is likely responsible for this phenomenon.


Assuntos
Núcleo Celular/metabolismo , RNA Mensageiro/metabolismo , Febre do Vale de Rift/metabolismo , Vírus da Febre do Vale do Rift/metabolismo , Proteínas não Estruturais Virais/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/genética , Núcleo Celular/virologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , RNA Mensageiro/genética , Febre do Vale de Rift/genética , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Proteínas não Estruturais Virais/genética
3.
Hum Vaccin Immunother ; 11(8): 1991-2004, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996997

RESUMO

Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed.


Assuntos
Eletroporação , Filoviridae/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença do Vírus de Marburg/prevenção & controle , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Códon , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ensaio de Imunoadsorção Enzimática , ELISPOT , Feminino , Filoviridae/genética , Glicoproteínas/genética , Glicoproteínas/imunologia , Imunoglobulina G/sangue , Injeções Intramusculares , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Macaca fascicularis , Masculino , Testes de Neutralização , Plasmídeos , Análise de Sobrevida , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
4.
J Virol ; 87(21): 11659-69, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966414

RESUMO

Rift Valley fever virus (RVFV), an ambisense member of the family Bunyaviridae, genus Phlebovirus, is the causative agent of Rift Valley fever, an important zoonotic infection in Africa and the Middle East. Phlebovirus proteins are translated from virally transcribed mRNAs that, like host mRNA, are capped but, unlike host mRNAs, are not polyadenylated. Here, we investigated the role of PABP1 during RVFV infection of HeLa cells. Immunofluorescence studies of infected cells demonstrated a gross relocalization of PABP1 to the nucleus late in infection. Immunofluorescence microscopy studies of nuclear proteins revealed costaining between PABP1 and markers of nuclear speckles. PABP1 relocalization was sharply decreased in cells infected with a strain of RVFV lacking the gene encoding the RVFV nonstructural protein S (NSs). To determine whether PABP1 was required for RVFV infection, we measured the production of nucleocapsid protein (N) in cells transfected with small interfering RNAs (siRNAs) targeting PABP1. We found that the overall percentage of RVFV N-positive cells was not changed by siRNA treatment, indicating that PABP1 was not required for RVFV infection. However, when we analyzed populations of cells producing high versus low levels of PABP1, we found that the percentage of RVFV N-positive cells was decreased in cell populations producing physiologic levels of PABP1 and increased in cells with reduced levels of PABP1. Together, these results suggest that production of the NSs protein during RVFV infection leads to sequestration of PABP1 in the nuclear speckles, creating a state within the cell that favors viral protein production.


Assuntos
Núcleo Celular/metabolismo , Interações Hospedeiro-Patógeno , Proteína I de Ligação a Poli(A)/metabolismo , Vírus da Febre do Vale do Rift/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Deleção de Genes , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Vírus da Febre do Vale do Rift/genética , Proteínas não Estruturais Virais/genética
5.
Hum Vaccin Immunother ; 8(11): 1703-6, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22922764

RESUMO

We evaluated the immunogenicity and protective efficacy of DNA vaccines expressing the codon-optimized envelope glycoprotein genes of Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus (Musoke and Ravn). Intramuscular or intradermal delivery of the vaccines in BALB/c mice was performed using the TriGrid™ electroporation device. Mice that received DNA vaccines against the individual viruses developed robust glycoprotein-specific antibody titers as determined by ELISA and survived lethal viral challenge with no display of clinical signs of infection. Survival curve analysis revealed there was a statistically significant increase in survival compared to the control groups for both the Ebola and Ravn virus challenges. These data suggest that further analysis of the immune responses generated in the mice and additional protection studies in nonhuman primates are warranted.


Assuntos
Eletroporação/métodos , Doença pelo Vírus Ebola/prevenção & controle , Doença do Vírus de Marburg/prevenção & controle , Músculos/metabolismo , Vacinas de DNA/administração & dosagem , Vacinas de DNA/uso terapêutico , Animais , Ebolavirus/imunologia , Ebolavirus/patogenicidade , Feminino , Doença pelo Vírus Ebola/imunologia , Doença do Vírus de Marburg/imunologia , Marburgvirus/imunologia , Marburgvirus/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...