Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 31(10): 1184-1199.e3, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37625399

RESUMO

The fusion peptide of SARS-CoV-2 spike is essential for infection. How this charged and hydrophobic domain occupies and affects membranes needs clarification. Its depth in zwitterionic, bilayered micelles at pH 5 (resembling late endosomes) was measured by paramagnetic NMR relaxation enhancements used to bias molecular dynamics simulations. Asp830 inserted deeply, along with Lys825 or Lys835. Protonation of Asp830 appeared to enhance agreement of simulated and NMR-measured depths. While the fusion peptide occupied a leaflet of the DMPC bilayer, the opposite leaflet invaginated with influx of water and choline head groups in around Asp830 and bilayer-inserted polar side chains. NMR-detected hydrogen exchange found corroborating hydration of the backbone of Thr827-Phe833 inserted deeply in bicelles. Pinching of the membrane at the inserted charge and the intramembrane hydration of polar groups agree with theory. Formation of corridors of hydrated, inward-turned head groups was accompanied by flip-flop of head groups. Potential roles of the defects are discussed.


Assuntos
COVID-19 , Bicamadas Lipídicas , Humanos , Bicamadas Lipídicas/química , SARS-CoV-2/genética , Micelas , Peptídeos
2.
ACS Pharmacol Transl Sci ; 5(5): 344-361, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35592439

RESUMO

During the development of a melanocortin (MC) peptide drug to treat the condition of cachexia (a hypermetabolic state producing lean body mass wasting), we were confronted with the need for peptide transport across the blood-brain barrier (BBB): the MC-4 receptors (MC4Rs) for metabolic rate control are located in the hypothalamus, i.e., behind the BBB. Using the term "peptides with BBB transport", we screened the medical literature like a peptide library. This revealed numerous "hits"-peptides with BBB transport and/or oral activity. We noted several features common to most peptides in this class, including a dipeptide sequence of nonpolar residues, primary structure cyclization (whole or partial), and a Pro-aromatic motif usually within the cyclized region. Based on this, we designed an MC4R antagonist peptide, TCMCB07, that successfully treated many forms of cachexia. As part of our pharmacokinetic characterization of TCMCB07, we discovered that hepatobiliary extraction from blood accounted for a majority of the circulating peptide's excretion. Further screening of the literature revealed that TCMCB07 is a member of a long-forgotten peptide class, showing active transport by a multi-specific bile salt carrier. Bile salt transport peptides have predictable pharmacokinetics, including BBB transport, but rapid hepatic clearance inhibited their development as drugs. TCMCB07 shares the general characteristics of the bile salt peptide class but with a much longer half-life of hours, not minutes. A change in its C-terminal amino acid sequence slows hepatic clearance. This modification is transferable to other peptides in this class, suggesting a platform approach for producing drug-like peptides.

3.
Biochem Soc Trans ; 50(2): 839-851, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35343563

RESUMO

Pancreatic cancer incurs the worst survival rate of the major cancers. High levels of the protease matrix metalloproteinase-7 (MMP-7) in circulation correlate with poor prognosis and limited survival of patients. MMP-7 is required for a key path of pancreatic tumorigenesis in mice and is present throughout tumor progression. Enhancements to chemotherapies are needed for increasing the number of pancreatic tumors that can be removed and for preventing relapses after surgery. With these ends in mind, selective inhibition of MMP-7 may be worth investigation. An anti-MMP-7 monoclonal antibody was recently shown to increase the susceptibility of several pancreatic cancer cell lines to chemotherapeutics, increase their apoptosis, and decrease their migration. MMP-7 activities are most apparent at the surfaces of innate immune, epithelial, and tumor cells. Proteolytic shedding of multiple protein ectodomains by MMP-7 from such cell surfaces influence apoptosis, proliferation, migration, and invasion. These activities warrant targeting of MMP-7 selectively in pancreatic cancer and other tumors of mucosal epithelia. Competitive and non-competitive modes of MMP-7 inhibition are discussed.


Assuntos
Metaloproteinase 7 da Matriz , Neoplasias Pancreáticas , Animais , Linhagem Celular Tumoral , Movimento Celular , Humanos , Metaloproteinase 7 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/uso terapêutico , Camundongos , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Neoplasias Pancreáticas
4.
J Am Chem Soc ; 143(33): 13205-13211, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34375093

RESUMO

The receptor binding and proteolysis of Spike of SARS-CoV-2 release its S2 subunit to rearrange and catalyze viral-cell fusion. This deploys the fusion peptide for insertion into the cell membranes targeted. We show that this fusion peptide transforms from intrinsic disorder in solution into a wedge-shaped structure inserted in bilayered micelles, according to chemical shifts, 15N NMR relaxation, and NOEs. The globular fold of three helices contrasts the open, extended forms of this region observed in the electron density of compact prefusion states. In the hydrophobic, narrow end of the wedge, helices 1 and 2 contact the fatty acyl chains of phospholipids, according to NOEs and proximity to a nitroxide spin label deep in the membrane mimic. The polar end of the wedge may engage and displace lipid head groups and bind Ca2+ ions for membrane fusion. Polar helix 3 protrudes from the bilayer where it might be accessible to antibodies.


Assuntos
Micelas , Peptídeos/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , COVID-19/patologia , COVID-19/virologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Nat Commun ; 11(1): 6191, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273474

RESUMO

In plants, light-dependent activation of de novo fatty acid synthesis (FAS) is partially mediated by acetyl-CoA carboxylase (ACCase), the first committed step for this pathway. However, it is not fully understood how plants control light-dependent FAS regulation to meet the cellular demand for acyl chains. We report here the identification of a gene family encoding for three small plastidial proteins of the envelope membrane that interact with the α-carboxyltransferase (α-CT) subunit of ACCase and participate in an original mechanism restraining FAS in the light. Light enhances the interaction between carboxyltransferase interactors (CTIs) and α-CT, which in turn attenuates carbon flux into FAS. Knockouts for CTI exhibit higher rates of FAS and marked increase in absolute triacylglycerol levels in leaves, more than 4-fold higher than in wild-type plants. Furthermore, WRINKLED1, a master transcriptional regulator of FAS, positively regulates CTI1 expression by direct binding to its promoter. This study reveals that in addition to light-dependent activation, "envelope docking" of ACCase permits fine-tuning of fatty acid supply during the plant life cycle.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Arabidopsis/metabolismo , Ácidos Graxos/biossíntese , Membranas Intracelulares/metabolismo , Acetatos/metabolismo , Acetil-CoA Carboxilase/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Radioisótopos de Carbono , Regulação da Expressão Gênica no Desenvolvimento , Luz , Simulação de Acoplamento Molecular , Plastídeos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Protoplastos/metabolismo
6.
J Biol Chem ; 295(29): 9901-9916, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32467229

RESUMO

Acetyl-CoA carboxylase (ACCase) catalyzes the first committed step in the de novo synthesis of fatty acids. The multisubunit ACCase in the chloroplast is activated by a shift to pH 8 upon light adaptation and is inhibited by a shift to pH 7 upon dark adaptation. Here, titrations with the purified ACCase biotin attachment domain-containing (BADC) and biotin carboxyl carrier protein (BCCP) subunits from Arabidopsis indicated that they can competently and independently bind biotin carboxylase (BC) but differ in responses to pH changes representing those in the plastid stroma during light or dark conditions. At pH 7 in phosphate buffer, BADC1 and BADC2 gain an advantage over BCCP1 and BCCP2 in affinity for BC. At pH 8 in KCl solution, however, BCCP1 and BCCP2 had more than 10-fold higher affinity for BC than did BADC1. The pH-modulated shifts in BC preferences for BCCP and BADC partners suggest they contribute to light-dependent regulation of heteromeric ACCase. Using NMR spectroscopy, we found evidence for increased intrinsic disorder of the BADC and BCCP subunits at pH 7. We propose that this intrinsic disorder potentially promotes fast association with BC through a "fly-casting mechanism." We hypothesize that the pH effects on the BADC and BCCP subunits attenuate ACCase activity by night and enhance it by day. Consistent with this hypothesis, Arabidopsis badc1 badc3 mutant lines grown in a light-dark cycle synthesized more fatty acids in their seeds. In summary, our findings provide evidence that the BADC and BCCP subunits function as pH sensors required for light-dependent switching of heteromeric ACCase activity.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Cloroplastos/metabolismo , Fotossíntese/fisiologia , Acetil-CoA Carboxilase/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Concentração de Íons de Hidrogênio
7.
J Biomol NMR ; 73(12): 675-685, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541395

RESUMO

Protein-based NMR spectroscopy has proven to be a very robust method for finding fragment leads to protein targets. However, one limitation of protein-based NMR is that the data acquisition and analysis can be time consuming. In order to streamline the scoring of protein-based NMR fragment screening data and the determination of ligand affinities using 2D NMR experiments we have developed a data analysis workflow based on principal component analysis (PCA) within the TREND NMR Pro software package. We illustrate this using four different proteins and sets of ligands which interact with these proteins over a range of affinities. Also, these PCA-based methods can be successfully applied even to systems where ligand binding to target proteins is in intermediate or even slow exchange on the NMR time scale. Finally, these methods will work for scoring of fragment binding data using protein spectra that are either highly overlapped or lower in resolution.


Assuntos
Descoberta de Drogas/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Análise de Componente Principal/métodos , Ligantes , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica
8.
Structure ; 27(2): 281-292.e6, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30471921

RESUMO

Critical to migration of tumor cells and endothelial cells is the proteolytic attack of membrane type 1 matrix metalloproteinase (MT1-MMP) upon collagen, growth factors, and receptors at cell surfaces. Lipid bilayer interactions of the substrate-binding hemopexin-like (HPX) domain of MT1-MMP were investigated by paramagnetic nuclear magnetic resonance relaxation enhancements (PREs), fluorescence, and mutagenesis. The HPX domain binds bilayers by blades II and IV on opposite sides of its ß propeller fold. The EPGYPK sequence protruding from both blades inserts among phospholipid head groups in PRE-restrained molecular dynamics simulations. Bilayer binding to either blade II or IV exposes the CD44 binding site in blade I. Bilayer association with blade IV allows the collagen triple helix to bind without obstruction. Indeed, vesicles enhance proteolysis of collagen triple-helical substrates by the ectodomain of MT1-MMP. Hypothesized side-by-side MT1-MMP homodimerization would allow binding of bilayers, collagen, CD44, and head-to-tail oligomerization.


Assuntos
Bicamadas Lipídicas/metabolismo , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/metabolismo , Mutagênese , Sítios de Ligação , Colágeno/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Receptores de Hialuronatos/metabolismo , Metaloproteinase 14 da Matriz/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Multimerização Proteica
9.
Methods Enzymol ; 607: 217-240, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30149859

RESUMO

The new TREND NMR software package makes significant new insights into enzymes and other molecules easily accessible from collections of unassigned NMR spectra. TREND NMR uses unsupervised multivariate statistics to automate extraction of reaction courses for fitting, including binding isotherms from titrations detected by NMR spectra. The package also makes comparisons and groupings of NMR-detected enzyme states straightforward, by using principal component analysis (PCA). Such comparisons are illustrated for human protein tyrosine phosphatase 1B variants and inhibitor complexes. The "unfold" PCA-based comparisons of these protein phosphatase samples in one to three statistical dimensions are consistent with the recent structural characterizations of the samples, suggesting the relevance of quick assessment by PCA implemented semiautomatically in TREND NMR. The software is free for academic use. Step-by-step protocols are provided for measuring affinities and comparing molecular states using TREND NMR.


Assuntos
Análise de Dados , Ressonância Magnética Nuclear Biomolecular/métodos , Análise de Componente Principal , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Algoritmos , Simulação por Computador , Naftóis , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Software , Triazinas
10.
Structure ; 26(7): 917-918, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972770

RESUMO

Bacterial pathogens can switch signaling by sensing threonine phosphorylation. In this issue of Structure, Heinkel et al. (2018) report novel rearrangements linking threonine phosphorylation to tandem forkhead-associated (FHA) domains from an ATP-binding cassette (ABC) transporter. The resulting associations probably regulate oligomerization and transport in Mycoplasma tuberculosis.


Assuntos
Mycobacterium tuberculosis/química , Transportadores de Cassetes de Ligação de ATP/química , Ginástica , Fosforilação , Proteínas Serina-Treonina Quinases/química
11.
Sci Rep ; 7(1): 5343, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706231

RESUMO

Enzymes sample multiple conformations during their catalytic cycles. Chemical shifts from Nuclear Magnetic Resonance (NMR) are hypersensitive to conformational changes and ensembles in solution. Phosphomannomutase/phosphoglucomutase (PMM/PGM) is a ubiquitous four-domain enzyme that catalyzes phosphoryl transfer across phosphohexose substrates. We compared states the enzyme visits during its catalytic cycle. Collective responses of Pseudomonas PMM/PGM to phosphosugar substrates and inhibitor were assessed using NMR-detected titrations. Affinities were estimated from binding isotherms obtained by principal component analysis (PCA). Relationships among phosphosugar-enzyme associations emerge from PCA comparisons of the titrations. COordiNated Chemical Shifts bEhavior (CONCISE) analysis provides novel discrimination of three ligand-bound states of PMM/PGM harboring a mutation that suppresses activity. Enzyme phosphorylation and phosphosugar binding appear to drive the open dephosphorylated enzyme to the free phosphorylated state, and on toward ligand-closed states. Domain 4 appears central to collective responses to substrate and inhibitor binding. Hydrogen exchange reveals that binding of a substrate analogue enhances folding stability of the domains to a uniform level, establishing a globally unified structure. CONCISE and PCA of NMR spectra have discovered novel states of a well-studied enzyme and appear ready to discriminate other enzyme and ligand binding states.


Assuntos
Espectroscopia de Ressonância Magnética , Fosfoglucomutase/química , Fosfoglucomutase/metabolismo , Pseudomonas/enzimologia , Inibidores Enzimáticos/metabolismo , Modelos Moleculares , Análise de Componente Principal , Ligação Proteica , Conformação Proteica , Fosfatos Açúcares/metabolismo
12.
Structure ; 25(7): 1100-1110.e5, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28648610

RESUMO

Heparan sulfate proteoglycans activate the matrix metalloproteinase-7 zymogen (proMMP-7) and recruit it in order to shed proteins from cell surfaces. This occurs in uterine and mammary epithelia, bacterial killing, lung healing, and tumor cell signaling. Basic tracks on proMMP-7 recognize polyanionic heparin, according to nuclear magnetic resonance and mutations disruptive of maturation. Contacts and proximity measurements guided docking of a heparin octasaccharide to proMMP-7. The reducing end fits into a basic pocket in the pro-domain while the chain continues toward the catalytic domain. Another oligosaccharide traverses a basic swath remote on the catalytic domain and inserts its reducing end into a slot formed with the basic C terminus. This latter association appears to support allosteric acceleration of proteolysis. The modes of binding account for extended, heterogeneous assemblies of proMMP-7 with heparinoids during maturation and for bridging to pro-α-defensins and proteoglycans. These associations support proteolytic release of activities at epithelial cell surfaces.


Assuntos
Precursores Enzimáticos/química , Heparina/metabolismo , Metaloendopeptidases/química , Simulação de Acoplamento Molecular , Domínio Catalítico , Precursores Enzimáticos/metabolismo , Heparina/química , Humanos , Metaloendopeptidases/metabolismo , Ligação Proteica , Proteólise , Eletricidade Estática
13.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt A): 1964-1973, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28442379

RESUMO

Water soluble matrix metalloproteinases (MMPs) have been regarded as diffusing freely in the extracellular matrix. Yet multiple MMPs are also observed at cell surfaces. Their membrane-proximal activities include sheddase activities, collagenolysis, bacterial killing, and intracellular trafficking reaching as far as the nucleus. The catalytic domains of MMP-7 and MMP-12 bind bilayers peripherally, each in two different orientations, by presenting positive charges and a few hydrophobic groups to the surface. Related peripheral membrane associations are predicted for other soluble MMPs. The peripheral membrane associations may support pericellular proteolysis and endocytosis. The isolated soluble domains of MT1-MMP can also associate with membranes. NMR assays suggest transient association of the hemopexin-like domains of MT1-MMP and MMP-12 with lipid bilayers. Peripheral association of soluble MMP domains with bilayers or heparin sulfate proteoglycans probably concentrates them near the membrane. This could increase the probability of forming complexes with membrane-associated proteins, such as those targeted for proteolysis. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.


Assuntos
Membrana Celular/enzimologia , Heparina/análogos & derivados , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Proteoglicanas/metabolismo , Proteólise , Animais , Heparina/química , Heparina/metabolismo , Humanos , Metaloproteinase 12 da Matriz/química , Metaloproteinase 14 da Matriz/química , Metaloproteinase 7 da Matriz/química , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Proteoglicanas/química
14.
Methods Mol Biol ; 1579: 61-86, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28299733

RESUMO

Peripheral binding of proteins to lipid bilayers is critical not only in intracellular signaling but also in metalloproteinase shedding of signaling proteins from cell surfaces. Assessment of how proteins recognize fluid bilayers peripherally using crystallography or structure-based predictions has been important but incomplete. Assay of dynamic protein-bilayer interactions in solution has become feasible and reliable using paramagnetic NMR and site-directed fluor labeling. Details of preparations and assay protocols for these spectroscopic measurements of bilayer proximity or contact, respectively, are described.


Assuntos
Bicamadas Lipídicas/metabolismo , Metaloproteases/química , Metaloproteases/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Solubilidade
15.
Biophys J ; 112(2): 224-233, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122211

RESUMO

Principal component analysis (PCA) discovers patterns in multivariate data that include spectra, microscopy, and other biophysical measurements. Direct application of PCA to crowded spectra, images, and movies (without selecting peaks or features) was shown recently to identify their equilibrium or temporal changes. To enable the community to utilize these capabilities with a wide range of measurements, we have developed multiplatform software named TREND to Track Equilibrium and Nonequilibrium population shifts among two-dimensional Data frames. TREND can also carry this out by independent component analysis. We highlight a few examples of finding concurrent processes. TREND extracts dual phases of binding to two sites directly from the NMR spectra of the titrations. In a cardiac movie from magnetic resonance imaging, TREND resolves principal components (PCs) representing breathing and the cardiac cycle. TREND can also reconstruct the series of measurements from selected PCs, as illustrated for a biphasic, NMR-detected titration and the cardiac MRI movie. Fidelity of reconstruction of series of NMR spectra or images requires more PCs than needed to plot the largest population shifts. TREND reads spectra from many spectroscopies in the most common formats (JCAMP-DX and NMR) and multiple movie formats. The TREND package thus provides convenient tools to resolve the processes recorded by diverse biophysical methods.


Assuntos
Software , Estatística como Assunto/métodos , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Análise de Componente Principal
16.
ACS Omega ; 2(11): 8445-8452, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457382

RESUMO

Phosphoglucosamine mutase (PNGM) is an evolutionarily conserved bacterial enzyme in the peptidoglycan biosynthetic pathway, catalyzing the reversible conversion between glucosamine 1- and 6-phosphate. Previous structural studies of PNGM from the pathogen Bacillus anthracis revealed its dimeric assembly and highlighted the rotational mobility of its C-terminal domain. Recent studies of two other enzymes in the same superfamily have demonstrated the long-range effects on the conformational flexibility associated with phosphorylation of the conserved, active site phosphoserine involved in phosphoryl transfer. Building on this work, we use a combination of experimental and computational studies to show that the active, phosphorylated version of B. anthracis PNGM has decreased flexibility relative to its inactive, dephosphorylated state. Limited proteolysis reveals an enhanced and accelerated cleavage of the dephosphorylated enzyme. 15N transverse relaxation-optimized NMR spectra corroborate a conformational adjustment with broadening and shifts of peaks relative to the phospho-enzyme. Electrostatic calculations indicate that residues in the mobile, C-terminal domain are linked to the phosphoserine by lines of attraction that are absent in the dephosphorylated enzyme. Phosphorylation-dependent changes in protein flexibility appear linked with the conformational change and enzyme mechanism in PNGM, establishing this as a conserved theme in multiple subgroups of the diverse α-d-phosphohexomutase superfamily.

17.
PLoS One ; 11(10): e0164394, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764146

RESUMO

Asthma is prevalent in children and cats, and needs means of noninvasive diagnosis. We sought to distinguish noninvasively the differences in 53 cats before and soon after induction of allergic asthma, using NMR spectra of exhaled breath condensate (EBC). Statistical pattern recognition was improved considerably by preprocessing the spectra with probabilistic quotient normalization and glog transformation. Classification of the 106 preprocessed spectra by principal component analysis and partial least squares with discriminant analysis (PLS-DA) appears to be impaired by variances unrelated to eosinophilic asthma. By filtering out confounding variances, orthogonal signal correction (OSC) PLS-DA greatly improved the separation of the healthy and early asthmatic states, attaining 94% specificity and 94% sensitivity in predictions. OSC enhancement of multi-level PLS-DA boosted the specificity of the prediction to 100%. OSC-PLS-DA of the normalized spectra suggest the most promising biomarkers of allergic asthma in cats to include increased acetone, metabolite(s) with overlapped NMR peaks near 5.8 ppm, and a hydroxyphenyl-containing metabolite, as well as decreased phthalate. Acetone is elevated in the EBC of 74% of the cats with early asthma. The noninvasive detection of early experimental asthma, biomarkers in EBC, and metabolic perturbation invite further investigation of the diagnostic potential in humans.


Assuntos
Asma/diagnóstico , Biomarcadores/análise , Alérgenos/imunologia , Animais , Asma/etiologia , Asma/veterinária , Biomarcadores/metabolismo , Líquidos Corporais/química , Testes Respiratórios , Gatos , Eosinofilia/metabolismo , Eosinofilia/patologia , Expiração , Análise Fatorial , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Análise Multivariada , Toxina Pertussis/imunologia , Análise de Componente Principal
18.
Anal Chem ; 88(16): 8172-8, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27458657

RESUMO

Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/metabolismo , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ácido Glicoquenodesoxicólico/química , Ácido Glicoquenodesoxicólico/metabolismo , Imageamento por Ressonância Magnética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Análise de Componente Principal , Ligação Proteica , Proteínas/química
19.
J Biol Chem ; 291(15): 7888-901, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26887942

RESUMO

Collagenolysis is essential in extracellular matrix homeostasis, but its structural basis has long been shrouded in mystery. We have developed a novel docking strategy guided by paramagnetic NMR that positions a triple-helical collagen V mimic (synthesized with nitroxide spin labels) in the active site of the catalytic domain of matrix metalloproteinase-12 (MMP-12 or macrophage metalloelastase) primed for catalysis. The collagenolytically productive complex forms by utilizing seven distinct subsites that traverse the entire length of the active site. These subsites bury ∼1,080 Å(2)of surface area, over half of which is contributed by the trailing strand of the synthetic collagen V mimic, which also appears to ligate the catalytic zinc through the glycine carbonyl oxygen of its scissile G∼VV triplet. Notably, the middle strand also occupies the full length of the active site where it contributes extensive interfacial contacts with five subsites. This work identifies, for the first time, the productive and specific interactions of a collagen triple helix with an MMP catalytic site. The results uniquely demonstrate that the active site of the MMPs is wide enough to accommodate two strands from collagen triple helices. Paramagnetic relaxation enhancements also reveal an extensive array of encounter complexes that form over a large part of the catalytic domain. These transient complexes could possibly facilitate the formation of collagenolytically active complexes via directional Brownian tumbling.


Assuntos
Colágeno Tipo V/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Colágeno Tipo V/química , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Metaloproteinase 12 da Matriz/química , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Mapas de Interação de Proteínas , Estrutura Secundária de Proteína
20.
Structure ; 23(11): 2099-110, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26439767

RESUMO

Matrix metalloproteinase-7 (MMP-7) sheds signaling proteins from cell surfaces to activate bacterial killing, wound healing, and tumorigenesis. The mechanism targeting soluble MMP-7 to membranes has been investigated. Nuclear magnetic resonance structures of the zymogen, free and bound to membrane mimics without and with anionic lipid, reveal peripheral binding to bilayers through paramagnetic relaxation enhancements. Addition of cholesterol sulfate partially embeds the protease in the bilayer, restricts its diffusion, and tips the active site away from the bilayer. Its insertion of hydrophobic residues organizes the lipids, pushing the head groups and sterol sulfate outward toward the enzyme's positive charge on the periphery of the enlarged interface. Fluorescence probing demonstrates a similar mode of binding to plasma membranes and internalized vesicles of colon cancer cells. Binding of bilayered micelles induces allosteric activation and conformational change in the auto-inhibitory peptide and the adjacent scissile site, illustrating a potential intermediate in the activation of the zymogen.


Assuntos
Membrana Celular/metabolismo , Metaloproteinase 7 da Matriz/química , Regulação Alostérica , Sequência de Aminoácidos , Linhagem Celular Tumoral , Colesterol/química , Colesterol/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Eletricidade Estática , Vesículas Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...