Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2219868120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307449

RESUMO

Flowers have a species-specific fertile period during which pollination and fertilization have to occur to initiate seed and fruit development. Unpollinated flowers remain receptive for mere hours in some species, and up to several weeks in others before flower senescence terminates fertility. As such, floral longevity is a key trait subject to both natural selection and plant breeding. Within the flower, the life span of the ovule containing the female gametophyte is decisive for fertilization and the initiation of seed development. Here, we show that unfertilized ovules in Arabidopsis thaliana undergo a senescence program that generates morphological and molecular hallmarks of canonical programmed cell death processes in the sporophytically derived ovule integuments. Transcriptome profiling of isolated aging ovules revealed substantial transcriptomic reprogramming during ovule senescence, and identified up-regulated transcription factors as candidate regulators of these processes. Combined mutation of three most-up-regulated NAC (NAM, ATAF1/2, and CUC2) transcription factors, NAP/ANAC029, SHYG/ANAC047, and ORE1/ANAC092, caused a substantial delay in ovule senescence and an extension of fertility in Arabidopsis ovules. These results suggest that timing of ovule senescence and duration of gametophyte receptivity are subject to genetic regulation controlled by the maternal sporophyte.


Assuntos
Arabidopsis , Fatores de Transcrição , Óvulo Vegetal , Melhoramento Vegetal , Fertilidade
2.
Plant Physiol ; 180(3): 1389-1405, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31097675

RESUMO

Aurora kinases are key regulators of mitosis. Multicellular eukaryotes generally possess two functionally diverged types of Aurora kinases. In plants, including Arabidopsis (Arabidopsis thaliana), these are termed α- and ß-Auroras. As the functional specification of Aurora kinases is determined by their specific interaction partners, we initiated interactomics analyses using both Arabidopsis α-Aurora kinases (AUR1 and AUR2). Proteomics results revealed that TPX2-LIKE PROTEINS2 and 3 (TPXL2/3) prominently associated with α-Auroras, as did the conserved TPX2 to a lower degree. Like TPX2, TPXL2 and TPXL3 strongly activated the AUR1 kinase but exhibited cell-cycle-dependent localization differences on microtubule arrays. The separate functions of TPX2 and TPXL2/3 were also suggested by their different influences on AUR1 localization upon ectopic expressions. Furthermore, genetic analyses showed that TPXL3, but not TPX2 and TPXL2, acts nonredundantly to enable proper embryo development. In contrast to vertebrates, plants have an expanded TPX2 family and these family members have both redundant and unique functions. Moreover, as neither TPXL2 nor TPXL3 contains the C-terminal Kinesin-5 binding domain present in the canonical TPX2, the targeting and activity of this kinesin must be organized differently in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/genética , Sementes/genética , Sequência de Aminoácidos , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ativação Enzimática/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Sementes/embriologia , Sementes/metabolismo , Homologia de Sequência de Aminoácidos
3.
Nat Plants ; 4(6): 365-375, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29808023

RESUMO

Flowers have a species-specific functional life span that determines the time window in which pollination, fertilization and seed set can occur. The stigma tissue plays a key role in flower receptivity by intercepting pollen and initiating pollen tube growth toward the ovary. In this article, we show that a developmentally controlled cell death programme terminates the functional life span of stigma cells in Arabidopsis. We identified the leaf senescence regulator ORESARA1 (also known as ANAC092) and the previously uncharacterized KIRA1 (also known as ANAC074) as partially redundant transcription factors that modulate stigma longevity by controlling the expression of programmed cell death-associated genes. KIRA1 expression is sufficient to induce cell death and terminate floral receptivity, whereas lack of both KIRA1 and ORESARA1 substantially increases stigma life span. Surprisingly, the extension of stigma longevity is accompanied by only a moderate extension of flower receptivity, suggesting that additional processes participate in the control of the flower's receptive life span.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Morte Celular/fisiologia , Flores/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento , Arabidopsis/metabolismo , Flores/citologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas
4.
Science ; 356(6336)2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28450583

RESUMO

To produce seeds, flowering plants need to specify somatic cells to undergo meiosis. Here, we reveal a regulatory cascade that controls the entry into meiosis starting with a group of redundantly acting cyclin-dependent kinase (CDK) inhibitors of the KIP-RELATED PROTEIN (KRP) class. KRPs function by restricting CDKA;1-dependent inactivation of the Arabidopsis Retinoblastoma homolog RBR1. In rbr1 and krp triple mutants, designated meiocytes undergo several mitotic divisions, resulting in the formation of supernumerary meiocytes that give rise to multiple reproductive units per future seed. One function of RBR1 is the direct repression of the stem cell factor WUSCHEL (WUS), which ectopically accumulates in meiocytes of triple krp and rbr1 mutants. Depleting WUS in rbr1 mutants restored the formation of only a single meiocyte.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Proteínas de Homeodomínio/metabolismo , Óvulo Vegetal/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas de Homeodomínio/genética , Meiose/genética , Meiose/fisiologia , Mutação , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo
5.
Genes Dev ; 31(1): 72-83, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115468

RESUMO

Cytosine methylation is a key epigenetic mark in many organisms, important for both transcriptional control and genome integrity. While relatively stable during somatic growth, DNA methylation is reprogrammed genome-wide during mammalian reproduction. Reprogramming is essential for zygotic totipotency and to prevent transgenerational inheritance of epimutations. However, the extent of DNA methylation reprogramming in plants remains unclear. Here, we developed sensors reporting with single-cell resolution CG and non-CG methylation in Arabidopsis. Live imaging during reproduction revealed distinct and sex-specific dynamics for both contexts. We found that CHH methylation in the egg cell depends on DOMAINS REARRANGED METHYLASE 2 (DRM2) and RNA polymerase V (Pol V), two main actors of RNA-directed DNA methylation, but does not depend on Pol IV. Our sensors provide insight into global DNA methylation dynamics at the single-cell level with high temporal resolution and offer a powerful tool to track CG and non-CG methylation both during development and in response to environmental cues in all organisms with methylated DNA, as we illustrate in mouse embryonic stem cells.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Análise de Célula Única , Animais , Proteínas de Arabidopsis/metabolismo , Linhagem Celular , RNA Polimerases Dirigidas por DNA/metabolismo , Células-Tronco Embrionárias , Regulação da Expressão Gênica , Camundongos , Plantas Geneticamente Modificadas , Reprodução/genética , Fatores Sexuais
6.
Annu Rev Cell Dev Biol ; 32: 441-468, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27298090

RESUMO

Programmed cell death (PCD) is a collective term for diverse processes causing an actively induced, tightly controlled cellular suicide. PCD has a multitude of functions in the development and health of multicellular organisms. In comparison to intensively studied forms of animal PCD such as apoptosis, our knowledge of the regulation of PCD in plants remains limited. Despite the importance of PCD in plant development and as a response to biotic and abiotic stresses, the complex molecular networks controlling different forms of plant PCD are only just beginning to emerge. With this review, we provide an update on the considerable progress that has been made over the last decade in our understanding of PCD as an inherent part of plant development. We highlight both functions of developmental PCD and central aspects of its molecular regulation.


Assuntos
Apoptose , Desenvolvimento Vegetal , Senescência Celular , Células Vegetais/metabolismo , Reprodução
7.
Curr Opin Plant Biol ; 29: 29-37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26658336

RESUMO

During plant development various forms of programmed cell death (PCD) are implemented by a number of cell types as inherent part of their differentiation programmes. Differentiation-induced developmental PCD is gradually prepared in concert with the other cell differentiation processes. As precocious or delayed PCD can have detrimental consequences for plant development, the actual execution of PCD has to be tightly controlled. Once triggered, PCD is irrevocably and rapidly executed accompanied by the breakdown of cellular compartments. In most developmental PCD forms, cell death is followed by cell corpse clearance. Devoid of phagocytic mechanisms, dying plant cells have to prepare their own demise in a cell-autonomous fashion before their deaths, ensuring the completion of cell clearance post mortem. Depending on the cell type, cell clearance can be complete or rather selective, and persistent corpses of particular cells accomplish vital functions in the plant body. The present review attempts to give an update on the molecular mechanisms that coordinate differentiation-induced PCD as vital part of plant development.


Assuntos
Apoptose , Diferenciação Celular , Células Vegetais/fisiologia , Desenvolvimento Vegetal
8.
Plant Physiol ; 169(4): 2684-99, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26438786

RESUMO

A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta.


Assuntos
Apoptose/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilação da Expressão Gênica/métodos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/classificação , Biologia Computacional/métodos , Perfilação da Expressão Gênica/classificação , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Peróxido de Hidrogênio/farmacologia , Microscopia Confocal , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Oxidantes/farmacologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cloreto de Sódio/farmacologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/efeitos da radiação , Raios Ultravioleta
9.
Curr Biol ; 24(9): 931-40, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24726156

RESUMO

BACKGROUND: The root cap is a plant organ that ensheathes the meristematic stem cells at the root tip. Unlike other plant organs, the root cap shows a rapid cellular turnover, balancing constant cell generation by specific stem cells with the disposal of differentiated cells at the root cap edge. This cellular turnover is critical for the maintenance of root cap size and its position around the growing root tip, but how this is achieved and controlled in the model plant Arabidopsis thaliana remains subject to contradictory hypotheses. RESULTS: Here, we show that a highly organized cell death program is the final step of lateral root cap differentiation and that preparation for cell death is transcriptionally controlled by ANAC033/SOMBRERO. Precise timing of cell death is critical for the elimination of root cap cells before they fully enter the root elongation zone, which in turn is important in order to allow optimal root growth. Root cap cell death is followed by a rapid cell-autonomous corpse clearance and DNA fragmentation dependent on the S1-P1 type nuclease BFN1. CONCLUSIONS: Based on these results, we propose a novel concept in plant development that recognizes programmed cell death as a mechanism for maintaining organ size and tissue homeostasis in the Arabidopsis root cap.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Morte Celular/genética , Desoxirribonucleases/metabolismo , Coifa/crescimento & desenvolvimento , Fatores de Transcrição/genética , Autólise , Proliferação de Células , Fragmentação do DNA , Desoxirribonucleases/genética , Regulação da Expressão Gênica de Plantas , Homeostase , Tamanho do Órgão , Desenvolvimento Vegetal , Coifa/fisiologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...