Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712036

RESUMO

Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Further, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.

2.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37398339

RESUMO

Chitin is an abundant biopolymer and pathogen-associated molecular pattern that stimulates a host innate immune response. Mammals express chitin-binding and chitin-degrading proteins to remove chitin from the body. One of these proteins, Acidic Mammalian Chitinase (AMCase), is an enzyme known for its ability to function under acidic conditions in the stomach but is also active in tissues with more neutral pHs, such as the lung. Here, we used a combination of biochemical, structural, and computational modeling approaches to examine how the mouse homolog (mAMCase) can act in both acidic and neutral environments. We measured kinetic properties of mAMCase activity across a broad pH range, quantifying its unusual dual activity optima at pH 2 and 7. We also solved high resolution crystal structures of mAMCase in complex with oligomeric GlcNAcn, the building block of chitin, where we identified extensive conformational ligand heterogeneity. Leveraging these data, we conducted molecular dynamics simulations that suggest how a key catalytic residue could be protonated via distinct mechanisms in each of the two environmental pH ranges. These results integrate structural, biochemical, and computational approaches to deliver a more complete understanding of the catalytic mechanism governing mAMCase activity at different pH. Engineering proteins with tunable pH optima may provide new opportunities to develop improved enzyme variants, including AMCase, for therapeutic purposes in chitin degradation.

3.
Cell ; 187(1): 44-61.e17, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38134932

RESUMO

Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1GoF) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1GoF expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPß was dependent on JAK1 in the vagus nerve, and CGRPß suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.


Assuntos
Dermatite Atópica , Imunidade Inata , Pulmão , Células Receptoras Sensoriais , Animais , Humanos , Camundongos , Citocinas , Dermatite Atópica/imunologia , Inflamação , Pulmão/imunologia , Linfócitos , Células Receptoras Sensoriais/enzimologia
4.
Immunohorizons ; 7(11): 729-736, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916861

RESUMO

Innate lymphoid cells (ILCs) have emerged as critical tissue-resident lymphocytes that coordinate responses to environmental stress and injury. Traditionally, their function was thought to mirror adaptive lymphocytes that respond to specific pathogens. However, recent work has uncovered a more central role for ILCs in maintaining homeostasis even in the absence of infection. ILCs are now better conceptualized as an environmental rheostat that helps maintain the local tissue setpoint during environmental challenge by integrating sensory stimuli to direct homeostatic barrier and repair programs. In this article, we trace the developmental origins of ILCs, relate how ILCs sense danger signals, and describe their subsequent engagement of appropriate repair responses using a general paradigm of ILCs functioning as central controllers in tissue circuits. We propose that these interactions form the basis for how ILC subsets maintain organ function and organismal homeostasis, with important implications for human health.


Assuntos
Imunidade Inata , Linfócitos , Humanos , Homeostase
5.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986974

RESUMO

Respiratory viruses including the human parainfluenza viruses (hPIVs) are a constant burden to human health, with morbidity and mortality frequently increased after the acute phase of the infection. Although is proven that respiratory viruses can persist in vitro, the mechanisms of virus or viral products persistence, their sources, and their impact on chronic respiratory diseases in vivo are unknown. Here, we used Sendai virus (SeV) to model hPIV infection in mice and test whether virus persistence associates with the development of chronic lung disease. Following SeV infection, virus products were detected in lung macrophages, type 2 innate lymphoid cells (ILC2s) and dendritic cells for several weeks after the infectious virus was cleared. Cells containing viral protein showed strong upregulation of antiviral and type 2 inflammation-related genes that associate with the development of chronic post-viral lung diseases, including asthma. Lineage tracing of infected cells or cells derived from infected cells suggests that distinct functional groups of cells contribute to the chronic pathology. Importantly, targeted ablation of infected cells or those derived from infected cells significantly ameliorated chronic lung disease. Overall, we identified persistent infection of innate immune cells as a critical factor in the progression from acute to chronic post viral respiratory disease.

6.
Science ; 381(6662): 1092-1098, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676935

RESUMO

Dietary fiber improves metabolic health, but host-encoded mechanisms for digesting fibrous polysaccharides are unclear. In this work, we describe a mammalian adaptation to dietary chitin that is coordinated by gastric innate immune activation and acidic mammalian chitinase (AMCase). Chitin consumption causes gastric distension and cytokine production by stomach tuft cells and group 2 innate lymphoid cells (ILC2s) in mice, which drives the expansion of AMCase-expressing zymogenic chief cells that facilitate chitin digestion. Although chitin influences gut microbial composition, ILC2-mediated tissue adaptation and gastrointestinal responses are preserved in germ-free mice. In the absence of AMCase, sustained chitin intake leads to heightened basal type 2 immunity, reduced adiposity, and resistance to obesity. These data define an endogenous metabolic circuit that enables nutrient extraction from an insoluble dietary constituent by enhancing digestive function.


Assuntos
Adaptação Fisiológica , Quitina , Quitinases , Fibras na Dieta , Obesidade , Estômago , Animais , Camundongos , Quitina/metabolismo , Imunidade Inata , Linfócitos/enzimologia , Linfócitos/imunologia , Obesidade/imunologia , Estômago/imunologia , Adaptação Fisiológica/imunologia , Quitinases/metabolismo , Digestão/imunologia
7.
Cell Rep ; 42(4): 112293, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952346

RESUMO

Demyelination is a hallmark of multiple sclerosis, leukoencephalopathies, cerebral vasculopathies, and several neurodegenerative diseases. The cuprizone mouse model is widely used to simulate demyelination and remyelination occurring in these diseases. Here, we present a high-resolution single-nucleus RNA sequencing (snRNA-seq) analysis of gene expression changes across all brain cells in this model. We define demyelination-associated oligodendrocytes (DOLs) and remyelination-associated MAFBhi microglia, as well as astrocytes and vascular cells with signatures of altered metabolism, oxidative stress, and interferon response. Furthermore, snRNA-seq provides insights into how brain cell types connect and interact, defining complex circuitries that impact demyelination and remyelination. As an explicative example, perturbation of microglia caused by TREM2 deficiency indirectly impairs the induction of DOLs. Altogether, this study provides a rich resource for future studies investigating mechanisms underlying demyelinating diseases.


Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Camundongos , Doenças Desmielinizantes/metabolismo , Transcriptoma/genética , Encéfalo/metabolismo , Oligodendroglia/metabolismo , Microglia/metabolismo , Cuprizona/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(46): e2215528119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343258

RESUMO

Group 2 innate lymphoid cells (ILC2) are innate counterparts of T helper 2 (Th2) cells that maintain tissue homeostasis and respond to injuries through rapid interleukin (IL)-5 and IL-13 secretion. ILC2s depend on availability of arginine and branched-chain amino acids for sustaining cellular fitness, proliferation, and cytokine secretion in both steady state and upon activation. However, the contribution of amino acid transporters to ILC2 functions is not known. Here, we found that ILC2s selectively express Slc7a8, encoding a transporter for arginine and large amino acids. Slc7a8 was expressed in ILC2s in a tissue-specific manner in steady state and was further increased upon activation. Genetic ablation of Slc7a8 in lymphocytes reduced the frequency of ILC2s, suppressed IL-5 and IL-13 production upon stimulation, and impaired type 2 immune responses to helminth infection. Consistent with this, Slc7a8-deficient ILC2s also failed to induce cytokine production and recruit eosinophils in a model of allergic lung inflammation. Mechanistically, reduced amino acid availability due to Slc7a8 deficiency led to compromised mitochondrial oxidative phosphorylation, as well as impaired activation of mammalian target of rapamycin and c-Myc signaling pathways. These findings identify Slc7a8 as a key supplier of amino acids for the metabolic programs underpinning fitness and activation of ILC2s.


Assuntos
Imunidade Inata , Linfócitos , Interleucina-13/genética , Aminoácidos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Homeostase , Arginina , Citocinas/metabolismo , Interleucina-33 , Pulmão/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(23): e2204557119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653568

RESUMO

C-type lectin domain family 4, member a4 (Clec4a4) is a C-type lectin inhibitory receptor specific for glycans thought to be exclusively expressed on murine CD8α− conventional dendritic cells. Using newly generated Clec4a4-mCherry knock-in mice, we identify a subset of Clec4a4-expressing eosinophils uniquely localized in the small intestine lamina propria. Clec4a4+ eosinophils evinced an immunomodulatory signature, whereas Clec4a4− eosinophils manifested a proinflammatory profile. Clec4a4+ eosinophils expressed high levels of aryl hydrocarbon receptor (Ahr), which drove the expression of Clec4a4 as well as other immunomodulatory features, such as PD-L1. The abundance of Clec4a4+ eosinophils was dependent on dietary AHR ligands, increased with aging, and declined in inflammatory conditions. Mice lacking AHR in eosinophils expanded innate lymphoid cells of type 2 and cleared Nippostrongylus brasiliensis infection more effectively than did wild-type mice. These results highlight the heterogeneity of eosinophils in response to tissue cues and identify a unique AHR-dependent subset of eosinophils in the small intestine with an immunomodulatory profile.


Assuntos
Eosinófilos , Receptores de Hidrocarboneto Arílico , Receptores de Superfície Celular , Eosinofilia/terapia , Hipersensibilidade Alimentar/terapia , Imunomodulação , Intestino Delgado , Contagem de Leucócitos , Ligantes , Receptores de Hidrocarboneto Arílico/genética
10.
Nature ; 607(7917): 142-148, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732734

RESUMO

The divergence of the common dendritic cell progenitor1-3 (CDP) into the conventional type 1 and type 2 dendritic cell (cDC1 and cDC2, respectively) lineages4,5 is poorly understood. Some transcription factors act in the commitment of already specified progenitors-such as BATF3, which stabilizes Irf8 autoactivation at the +32 kb Irf8 enhancer4,6-but the mechanisms controlling the initial divergence of CDPs remain unknown. Here we report the transcriptional basis of CDP divergence and describe the first requirements for pre-cDC2 specification. Genetic epistasis analysis7 suggested that Nfil3 acts upstream of Id2, Batf3 and Zeb2 in cDC1 development but did not reveal its mechanism or targets. Analysis of newly generated NFIL3 reporter mice showed extremely transient NFIL3 expression during cDC1 specification. CUT&RUN and chromatin immunoprecipitation followed by sequencing identified endogenous NFIL3 binding in the -165 kb Zeb2 enhancer8 at three sites that also bind the CCAAT-enhancer-binding proteins C/EBPα and C/EBPß. In vivo mutational analysis using CRISPR-Cas9 targeting showed that these NFIL3-C/EBP sites are functionally redundant, with C/EBPs supporting and NFIL3 repressing Zeb2 expression at these sites. A triple mutation of all three NFIL3-C/EBP sites ablated Zeb2 expression in myeloid, but not lymphoid progenitors, causing the complete loss of pre-cDC2 specification and mature cDC2 development in vivo. These mice did not generate T helper 2 (TH2) cell responses against Heligmosomoides polygyrus infection, consistent with cDC2 supporting TH2 responses to helminths9-11. Thus, CDP divergence into cDC1 or cDC2 is controlled by competition between NFIL3 and C/EBPs at the -165 kb Zeb2 enhancer.


Assuntos
Diferenciação Celular , Células Dendríticas , Elementos Facilitadores Genéticos , Mutação , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Células Dendríticas/classificação , Células Dendríticas/citologia , Células Dendríticas/patologia , Elementos Facilitadores Genéticos/genética , Epistasia Genética , Proteína 2 Inibidora de Diferenciação , Linfócitos/citologia , Camundongos , Células Mieloides/citologia , Nematospiroides dubius/imunologia , Proteínas Repressoras , Células Th2/citologia , Células Th2/imunologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
11.
Adv Exp Med Biol ; 1365: 57-73, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35567741

RESUMO

The immune system plays essential roles in maintaining homeostasis in mammalian tissues that extend beyond pathogen clearance and host defense. Recently, several homeostatic circuits comprised of paired hematopoietic and non-hematopoietic cells have been described to influence tissue composition and turnover in development and after perturbation. Crucial circuit components include innate lymphoid cells (ILCs), which seed developing organs and shape their resident tissues by influencing progenitor fate decisions, microbial interactions, and neuronal activity. As they develop in tissues, ILCs undergo transcriptional imprinting that encodes receptivity to corresponding signals derived from their resident tissues but ILCs can also shift their transcriptional profiles to adapt to specific types of tissue perturbation. Thus, ILC functions are embedded within their resident tissues, where they constitute key regulators of homeostatic responses that can lead to both beneficial and pathogenic outcomes. Here, we examine the interactions between ILCs and various non-hematopoietic tissue cells, and discuss how specific ILC-tissue cell circuits form essential elements of tissue immunity.


Assuntos
Imunidade Inata , Linfócitos , Animais , Homeostase , Mamíferos
12.
Cell Rep ; 38(11): 110507, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294888

RESUMO

Macrophage adhesion and stretching have been shown to induce interleukin (IL)-1ß production, but the mechanism of this mechanotransduction remains unclear. Here we specify the molecular link between mechanical tension on tissue-resident macrophages and activation of the NLRP3 inflammasome, which governs IL-1ß production. NLRP3 activation enhances antimicrobial defense, but excessive NLRP3 activity causes inflammatory tissue damage in conditions such as pulmonary fibrosis and acute respiratory distress syndrome. We find that the actin-bundling protein L-plastin (LPL) significantly enhances NLRP3 assembly. Specifically, LPL enables apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) oligomerization during NLRP3 assembly by stabilizing ASC interactions with the kinase Pyk2, a component of cell-surface adhesive structures called podosomes. Upon treatment with exogenous NLRP3 activators, lung-resident alveolar macrophages (AMs) lacking LPL exhibit reduced caspase-1 activity, IL-1ß cleavage, and gasdermin-D processing. LPL-/- mice display resistance to bleomycin-induced lung injury and fibrosis. These findings identify the LPL-Pyk2-ASC pathway as a target for modulation in NLRP3-mediated inflammatory conditions.


Assuntos
Inflamassomos , Fibrose Pulmonar , Animais , Bleomicina , Caspase 1/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Mecanotransdução Celular , Glicoproteínas de Membrana , Camundongos , Proteínas dos Microfilamentos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose Pulmonar/induzido quimicamente
13.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33974563

RESUMO

Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare but serious disease with poorly understood mechanisms. Here, we report that patients with EGPA have elevated levels of TSLP, IL-25, and soluble ST2, which are well-characterized cytokine "alarmins" that activate or modulate type 2 innate lymphoid cells (ILC2s). Patients with active EGPA have a concurrent reduction in circulating ILC2s, suggesting a role for ILC2s in the pathogenesis of this disease. To explore the mechanism of these findings in patients, we established a model of EGPA in which active vasculitis and pulmonary hemorrhage were induced by IL-33 administration in predisposed, hypereosinophilic mice. In this model, induction of pulmonary hemorrhage and vasculitis was dependent on ILC2s and signaling through IL4Rα. In the absence of IL4Rα or STAT6, IL-33-treated mice had less vascular leak and pulmonary edema, less endothelial activation, and reduced eotaxin production, cumulatively leading to a reduction of pathologic eosinophil migration into the lung parenchyma. These results offer a mouse model for use in future mechanistic studies of EGPA, and they suggest that IL-33, ILC2s, and IL4Rα signaling may be potential targets for further study and therapeutic targeting in patients with EGPA.


Assuntos
Síndrome de Churg-Strauss , Interleucina-33 , Linfócitos , Animais , Autoimunidade/imunologia , Síndrome de Churg-Strauss/imunologia , Síndrome de Churg-Strauss/metabolismo , Síndrome de Churg-Strauss/patologia , Modelos Animais de Doenças , Humanos , Imunidade Inata/imunologia , Interleucina-33/imunologia , Interleucina-33/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos
14.
Sci Rep ; 10(1): 7165, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346042

RESUMO

Perinatal hepatic inflammation can have devastating consequences. Monocytes play an important role in the initiation and resolution of inflammation, and their diverse functions can be attributed to specific cellular subsets: pro-inflammatory or classical monocytes (Ly6cHi) and pro-reparative or non-classical monocytes (Ly6cLo). We hypothesized that inherent differences in Ly6cHi classical monocytes and Ly6cLo non-classical monocytes determine susceptibility to perinatal hepatic inflammation in late gestation fetuses and neonates. We found an anti-inflammatory transcriptional profile expressed by Ly6cLo non-classical monocytes, and a physiologic abundance of these cells in the late gestation fetal liver. Unlike neonatal pups, late gestation fetuses proved to be resistant to rhesus rotavirus (RRV) mediated liver inflammation. Furthermore, neonatal pups were rendered resistant to RRV-mediated liver injury when Ly6cLo non-classical monocytes were expanded. Pharmacologic inhibition of Ly6cLo non-classical monocytes in this setting restored susceptibility to RRV-mediated disease. These data demonstrate that Ly6cLo monocytes promote resolution of perinatal liver inflammation in the late gestation fetus, where there is a physiologic expansion of non-classical monocytes, and in the neonatal liver upon experimental expansion of these cells. Therapeutic strategies directed towards enhancing Ly6cLo non-classical monocyte function may mitigate the detrimental effects of perinatal liver inflammation.


Assuntos
Antígenos Ly/imunologia , Hepatite Animal/imunologia , Monócitos/imunologia , Infecções por Rotavirus/imunologia , Rotavirus/imunologia , Animais , Hepatite Animal/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Monócitos/patologia , Infecções por Rotavirus/patologia
15.
Protein Sci ; 29(4): 966-977, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31930591

RESUMO

Chitin is an abundant polysaccharide used by many organisms for structural rigidity and water repulsion. As such, the insoluble crystalline structure of chitin poses significant challenges for enzymatic degradation. Acidic mammalian chitinase, a processive glycosyl hydrolase, is the primary enzyme involved in the degradation of environmental chitin in mammalian lungs. Mutations to acidic mammalian chitinase have been associated with asthma, and genetic deletion in mice increases morbidity and mortality with age. We initially set out to reverse this phenotype by engineering hyperactive acidic mammalian chitinase variants. Using a screening approach with commercial fluorogenic substrates, we identified mutations with consistent increases in activity. To determine whether the activity increases observed were consistent with more biologically relevant chitin substrates, we developed new assays to quantify chitinase activity with insoluble chitin, and identified a one-pot fluorogenic assay that is sufficiently sensitive to quantify changes to activity due to the addition or removal of a carbohydrate-binding domain. We show that the activity increases from our directed evolution screen were lost when insoluble substrates were used. In contrast, naturally occurring gain-of-function mutations gave similar results with oligomeric and insoluble substrates. We also show that activity differences between acidic mammalian chitinase and chitotriosidase are reduced with insoluble substrate, suggesting that previously reported activity differences with oligomeric substrates may have been driven by differential substrate specificity. These results highlight the need for assays against physiological substrates when engineering metabolic enzymes, and provide a new one-pot assay that may prove to be broadly applicable to engineering glycosyl hydrolases.


Assuntos
Quitina/metabolismo , Quitinases/metabolismo , Animais , Quitina/química , Quitinases/química , Quitinases/genética , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Engenharia de Proteínas , Solubilidade , Especificidade por Substrato
16.
J Immunol ; 204(4): 923-932, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31900338

RESUMO

The transcription factor BHLHE40 is an emerging regulator of the immune system. Recent studies suggest that BHLHE40 regulates type 2 immunity, but this has not been demonstrated in vivo. We found that BHLHE40 is required in T cells for a protective TH2 cell response in mice infected with the helminth Heligmosomoides polygyrus bakeri H. polygyrus elicited changes in gene and cytokine expression by lamina propria CD4+ T cells, many of which were BHLHE40 dependent, including production of the common ß (CSF2RB) chain family cytokines GM-CSF and IL-5. In contrast to deficiency in GM-CSF or IL-5 alone, loss of both GM-CSF and IL-5 signaling impaired protection against H. polygyrus Overall, we show that BHLHE40 regulates the TH2 cell transcriptional program during helminth infection to support normal expression of Csf2, Il5, and other genes required for protection and reveal unexpected redundancy of common ß chain-dependent cytokines previously thought to possess substantially divergent functions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas de Homeodomínio/metabolismo , Interleucina-5/metabolismo , Nematospiroides dubius/imunologia , Infecções por Strongylida/imunologia , Células Th2/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Subunidade beta Comum dos Receptores de Citocinas/genética , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Proteínas de Homeodomínio/genética , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/genética , Interleucina-5/antagonistas & inibidores , Interleucina-5/genética , Interleucina-5/imunologia , Camundongos , Camundongos Knockout , Mucosa/citologia , Mucosa/imunologia , Mucosa/metabolismo , Infecções por Strongylida/parasitologia , Células Th2/efeitos dos fármacos , Transcrição Gênica/imunologia
17.
Trends Immunol ; 41(1): 7-16, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31787504

RESUMO

Group 2 innate lymphoid cells (ILC2s) mediate allergic immunity but have also recently come into focus as key sentinels of tissue health and homeostasis. Clues as to how these rare immune cells coordinate tissue-wide responses to perturbation have emerged from deciphering the communication between ILC2s and an ever-expanding list of diverse nonhematopoietic cells. High-resolution tracking and profiling approaches have accelerated these efforts, revealing ILC2 transcriptional programs that are coordinated with tissue and organism development. We propose that the engagement of these homeostatic feedback circuits by internal and external cues forms the basis for how tissues instruct type 2 immunity. Understanding how these normally restorative networks become unbalanced may be crucial in devising appropriately targeted therapies for allergic diseases.


Assuntos
Imunidade Inata , Linfócitos , Homeostase/imunologia , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Imunidade Inata/imunologia , Linfócitos/imunologia
18.
Nat Immunol ; 19(10): 1093-1099, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201992

RESUMO

Group 2 innate lymphoid cells (ILC2s) are distributed systemically and produce type 2 cytokines in response to a variety of stimuli, including the epithelial cytokines interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP). Transcriptional profiling of ILC2s from different tissues, however, grouped ILC2s according to their tissue of origin, even in the setting of combined IL-25-, IL-33-receptor-, and TSLP-receptor-deficiency. Single-cell profiling confirmed a tissue-organizing transcriptome and identified ILC2 subsets expressing distinct activating receptors, including the major subset of skin ILC2s, which were activated preferentially by IL-18. Tissue ILC2 subsets were unaltered in number and expression in germ-free mice, suggesting that endogenous, tissue-derived signals drive the maturation of ILC2 subsets by controlling expression of distinct patterns of activating receptors, thus anticipating tissue-specific perturbations occurring later in life.


Assuntos
Imunidade Inata/imunologia , Subpopulações de Linfócitos/imunologia , Linfócitos/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
J Allergy Clin Immunol ; 142(2): 364-369, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29959948

RESUMO

Chitin, one of the most abundant biopolymers on Earth, is bound and degraded by chitinases, specialized enzymes that are similarly widespread in nature. Chitin catabolism affects global carbon and nitrogen cycles through a host of diverse biological processes, but recent work has focused attention on systems of chitin recognition and degradation conserved in mammals, connecting an ancient pathway of polysaccharide processing to human diseases influenced by persistent immune triggering. Here we review current advances in our understanding of how chitin-chitinase interactions affect mucosal immune feedback mechanisms essential to maintaining homeostasis and organ health.


Assuntos
Quitina/metabolismo , Quitinases/metabolismo , Doenças Respiratórias/metabolismo , Animais , Quitinases/genética , Exposição Ambiental , Extinção Biológica , Homeostase , Humanos , Imunidade nas Mucosas , Mamíferos , Camundongos , Polissacarídeos/imunologia
20.
Science ; 360(6393)2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29599193

RESUMO

Pulmonary neuroendocrine cells (PNECs) are rare airway epithelial cells whose function is poorly understood. Here we show that Ascl1-mutant mice that have no PNECs exhibit severely blunted mucosal type 2 response in models of allergic asthma. PNECs reside in close proximity to group 2 innate lymphoid cells (ILC2s) near airway branch points. PNECs act through calcitonin gene-related peptide (CGRP) to stimulate ILC2s and elicit downstream immune responses. In addition, PNECs act through the neurotransmitter γ-aminobutyric acid (GABA) to induce goblet cell hyperplasia. The instillation of a mixture of CGRP and GABA in Ascl1-mutant airways restores both immune and goblet cell responses. In accordance, lungs from human asthmatics show increased PNECs. These findings demonstrate that the PNEC-ILC2 neuroimmunological modules function at airway branch points to amplify allergic asthma responses.


Assuntos
Asma/imunologia , Asma/patologia , Pulmão/patologia , Células Neuroendócrinas/imunologia , Células Neuroendócrinas/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Citocinas/biossíntese , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Células Caliciformes/patologia , Humanos , Hiperplasia , Camundongos , Ácido gama-Aminobutírico/biossíntese , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...