Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz. j. biol ; 83: 1-8, 2023. ilus, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468909

RESUMO

A group of inherited blood defects is known as Thalassemia is among the world's most prevalent hemoglobinopathies. Thalassemias are of two types such as Alpha and Beta Thalassemia. The cause of these defects is gene mutations leading to low levels and/or malfunctioning α and β globin proteins, respectively. In some cases, one of these proteins may be completely absent. α and β globin chains form a globin fold or pocket for heme (Fe++) attachment to carry oxygen. Genes for alpha and beta-globin proteins are present in the form of a cluster on chromosome 16 and 11, respectively. Different globin genes are used at different stages in the life course. During embryonic and fetal developmental stages, γ globin proteins partner with α globin and are later replaced by β globin protein. Globin chain imbalances result in hemolysis and impede erythropoiesis. Individuals showing mild symptoms include carriers of alpha thalassemia or the people bearing alpha or beta-thalassemia trait. Alpha thalassemia causes conditions like hemolytic anemia or fatal hydrops fetalis depending upon the severity of the disease. Beta thalassemia major results in hemolytic anemia, growth retardation, and skeletal aberrations in early childhood. Children affected by this disorder need regular blood transfusions throughout their lives. Patients that depend on blood transfusion usually develop iron overload that causes other complications in the body systems like renal or hepatic impairment therefore, thalassemias are now categorized as a syndrome. The only cure for Thalassemias would be a bone marrow transplant, or gene therapy with currently no significant success rate. A thorough understanding of the molecular basis of this syndrome may provide novel insights and ideas for its treatment, as scientists have still been unable to find a permanent cure for this deadly disease after more than 87 years since it is first described in 1925.


Um grupo de defeitos sanguíneos hereditários é conhecido como talassemia e está entre as hemoglobinopatias mais prevalentes do mundo. As talassemias são de dois tipos, como talassemia alfa e beta. As causas desses defeitos são as mutações genéticas que levam a níveis baixos e/ou proteínas de globina com mau funcionamento, respectivamente. Em alguns casos, uma dessas proteínas pode estar completamente ausente. As cadeias de globina α e β formam uma dobra ou bolsa de globina para a fixação de heme (Fe ++) para transportar oxigênio. Os genes das proteínas alfa e beta globina estão presentes na forma de um cluster nos cromossomos 16 e 11, respectivamente. Diferentes genes de globina são usados em diferentes estágios do curso de vida. Durante os estágios de desenvolvimento embrionário e fetal, as proteínas γ globina se associam à α globina e, posteriormente, são substituídas pela proteína β globina. Os desequilíbrios da cadeia de globina resultam em hemólise e impedem a eritropoiese. Indivíduos que apresentam sintomas leves incluem portadores de talassemia alfa ou as pessoas com traços de talassemia alfa ou beta. A talassemia alfa causa condições como anemia hemolítica ou hidropsia fetal fatal, dependendo da gravidade da doença. A beta talassemia principal resulta em anemia hemolítica, retardo de crescimento e aberrações esqueléticas na primeira infância. As crianças afetadas por esse distúrbio precisam de transfusões de sangue regulares ao longo da vida. Os pacientes que dependem de transfusão de sangue geralmente desenvolvem sobrecarga de ferro que causa outras complicações nos sistemas do corpo, como insuficiência renal ou hepática, portanto as talassemias agora são classificadas como uma síndrome. A única cura para as talassemias seria um transplante de medula óssea ou terapia genética sem atualmente uma taxa de sucesso significativa. Uma compreensão completa da base molecular dessa síndrome pode fornecer novos insights e ideias para seu tratamento, [...].


Assuntos
Humanos , Talassemia alfa , Talassemia beta , Talassemia/complicações , Talassemia/genética
2.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469125

RESUMO

Abstract A group of inherited blood defects is known as Thalassemia is among the worlds most prevalent hemoglobinopathies. Thalassemias are of two types such as Alpha and Beta Thalassemia. The cause of these defects is gene mutations leading to low levels and/or malfunctioning and globin proteins, respectively. In some cases, one of these proteins may be completely absent. and globin chains form a globin fold or pocket for heme (Fe++) attachment to carry oxygen. Genes for alpha and beta-globin proteins are present in the form of a cluster on chromosome 16 and 11, respectively. Different globin genes are used at different stages in the life course. During embryonic and fetal developmental stages, globin proteins partner with globin and are later replaced by globin protein. Globin chain imbalances result in hemolysis and impede erythropoiesis. Individuals showing mild symptoms include carriers of alpha thalassemia or the people bearing alpha or beta-thalassemia trait. Alpha thalassemia causes conditions like hemolytic anemia or fatal hydrops fetalis depending upon the severity of the disease. Beta thalassemia major results in hemolytic anemia, growth retardation, and skeletal aberrations in early childhood. Children affected by this disorder need regular blood transfusions throughout their lives. Patients that depend on blood transfusion usually develop iron overload that causes other complications in the body systems like renal or hepatic impairment therefore, thalassemias are now categorized as a syndrome. The only cure for Thalassemias would be a bone marrow transplant, or gene therapy with currently no significant success rate. A thorough understanding of the molecular basis of this syndrome may provide novel insights and ideas for its treatment, as scientists have still been unable to find a permanent cure for this deadly disease after more than 87 years since it is first described in 1925.


Resumo Um grupo de defeitos sanguíneos hereditários é conhecido como talassemia e está entre as hemoglobinopatias mais prevalentes do mundo. As talassemias são de dois tipos, como talassemia alfa e beta. As causas desses defeitos são as mutações genéticas que levam a níveis baixos e/ou proteínas de globina com mau funcionamento, respectivamente. Em alguns casos, uma dessas proteínas pode estar completamente ausente. As cadeias de globina e formam uma dobra ou bolsa de globina para a fixação de heme (Fe ++) para transportar oxigênio. Os genes das proteínas alfa e beta globina estão presentes na forma de um cluster nos cromossomos 16 e 11, respectivamente. Diferentes genes de globina são usados em diferentes estágios do curso de vida. Durante os estágios de desenvolvimento embrionário e fetal, as proteínas globina se associam à globina e, posteriormente, são substituídas pela proteína globina. Os desequilíbrios da cadeia de globina resultam em hemólise e impedem a eritropoiese. Indivíduos que apresentam sintomas leves incluem portadores de talassemia alfa ou as pessoas com traços de talassemia alfa ou beta. A talassemia alfa causa condições como anemia hemolítica ou hidropsia fetal fatal, dependendo da gravidade da doença. A beta talassemia principal resulta em anemia hemolítica, retardo de crescimento e aberrações esqueléticas na primeira infância. As crianças afetadas por esse distúrbio precisam de transfusões de sangue regulares ao longo da vida. Os pacientes que dependem de transfusão de sangue geralmente desenvolvem sobrecarga de ferro que causa outras complicações nos sistemas do corpo, como insuficiência renal ou hepática, portanto as talassemias agora são classificadas como uma síndrome. A única cura para as talassemias seria um transplante de medula óssea ou terapia genética sem atualmente uma taxa de sucesso significativa. Uma compreensão completa da base molecular dessa síndrome pode fornecer novos insights e ideias para seu tratamento, já que os cientistas ainda não conseguiram encontrar uma cura permanente para essa doença mortal depois de mais de 87 anos desde que foi descrita pela primeira vez em 1925.

3.
Braz. j. biol ; 83: e246062, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1339355

RESUMO

Abstract A group of inherited blood defects is known as Thalassemia is among the world's most prevalent hemoglobinopathies. Thalassemias are of two types such as Alpha and Beta Thalassemia. The cause of these defects is gene mutations leading to low levels and/or malfunctioning α and β globin proteins, respectively. In some cases, one of these proteins may be completely absent. α and β globin chains form a globin fold or pocket for heme (Fe++) attachment to carry oxygen. Genes for alpha and beta-globin proteins are present in the form of a cluster on chromosome 16 and 11, respectively. Different globin genes are used at different stages in the life course. During embryonic and fetal developmental stages, γ globin proteins partner with α globin and are later replaced by β globin protein. Globin chain imbalances result in hemolysis and impede erythropoiesis. Individuals showing mild symptoms include carriers of alpha thalassemia or the people bearing alpha or beta-thalassemia trait. Alpha thalassemia causes conditions like hemolytic anemia or fatal hydrops fetalis depending upon the severity of the disease. Beta thalassemia major results in hemolytic anemia, growth retardation, and skeletal aberrations in early childhood. Children affected by this disorder need regular blood transfusions throughout their lives. Patients that depend on blood transfusion usually develop iron overload that causes other complications in the body systems like renal or hepatic impairment therefore, thalassemias are now categorized as a syndrome. The only cure for Thalassemias would be a bone marrow transplant, or gene therapy with currently no significant success rate. A thorough understanding of the molecular basis of this syndrome may provide novel insights and ideas for its treatment, as scientists have still been unable to find a permanent cure for this deadly disease after more than 87 years since it is first described in 1925.


Resumo Um grupo de defeitos sanguíneos hereditários é conhecido como talassemia e está entre as hemoglobinopatias mais prevalentes do mundo. As talassemias são de dois tipos, como talassemia alfa e beta. As causas desses defeitos são as mutações genéticas que levam a níveis baixos e/ou proteínas de globina com mau funcionamento, respectivamente. Em alguns casos, uma dessas proteínas pode estar completamente ausente. As cadeias de globina α e β formam uma dobra ou bolsa de globina para a fixação de heme (Fe ++) para transportar oxigênio. Os genes das proteínas alfa e beta globina estão presentes na forma de um cluster nos cromossomos 16 e 11, respectivamente. Diferentes genes de globina são usados ​​em diferentes estágios do curso de vida. Durante os estágios de desenvolvimento embrionário e fetal, as proteínas γ globina se associam à α globina e, posteriormente, são substituídas pela proteína β globina. Os desequilíbrios da cadeia de globina resultam em hemólise e impedem a eritropoiese. Indivíduos que apresentam sintomas leves incluem portadores de talassemia alfa ou as pessoas com traços de talassemia alfa ou beta. A talassemia alfa causa condições como anemia hemolítica ou hidropsia fetal fatal, dependendo da gravidade da doença. A beta talassemia principal resulta em anemia hemolítica, retardo de crescimento e aberrações esqueléticas na primeira infância. As crianças afetadas por esse distúrbio precisam de transfusões de sangue regulares ao longo da vida. Os pacientes que dependem de transfusão de sangue geralmente desenvolvem sobrecarga de ferro que causa outras complicações nos sistemas do corpo, como insuficiência renal ou hepática, portanto as talassemias agora são classificadas como uma síndrome. A única cura para as talassemias seria um transplante de medula óssea ou terapia genética sem atualmente uma taxa de sucesso significativa. Uma compreensão completa da base molecular dessa síndrome pode fornecer novos insights e ideias para seu tratamento, já que os cientistas ainda não conseguiram encontrar uma cura permanente para essa doença mortal depois de mais de 87 anos desde que foi descrita pela primeira vez em 1925.


Assuntos
Humanos , Pré-Escolar , Talassemia/genética , Talassemia beta/genética , Hemoglobinas
4.
Braz J Biol ; 83: e246062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495151

RESUMO

A group of inherited blood defects is known as Thalassemia is among the world's most prevalent hemoglobinopathies. Thalassemias are of two types such as Alpha and Beta Thalassemia. The cause of these defects is gene mutations leading to low levels and/or malfunctioning α and ß globin proteins, respectively. In some cases, one of these proteins may be completely absent. α and ß globin chains form a globin fold or pocket for heme (Fe++) attachment to carry oxygen. Genes for alpha and beta-globin proteins are present in the form of a cluster on chromosome 16 and 11, respectively. Different globin genes are used at different stages in the life course. During embryonic and fetal developmental stages, γ globin proteins partner with α globin and are later replaced by ß globin protein. Globin chain imbalances result in hemolysis and impede erythropoiesis. Individuals showing mild symptoms include carriers of alpha thalassemia or the people bearing alpha or beta-thalassemia trait. Alpha thalassemia causes conditions like hemolytic anemia or fatal hydrops fetalis depending upon the severity of the disease. Beta thalassemia major results in hemolytic anemia, growth retardation, and skeletal aberrations in early childhood. Children affected by this disorder need regular blood transfusions throughout their lives. Patients that depend on blood transfusion usually develop iron overload that causes other complications in the body systems like renal or hepatic impairment therefore, thalassemias are now categorized as a syndrome. The only cure for Thalassemias would be a bone marrow transplant, or gene therapy with currently no significant success rate. A thorough understanding of the molecular basis of this syndrome may provide novel insights and ideas for its treatment, as scientists have still been unable to find a permanent cure for this deadly disease after more than 87 years since it is first described in 1925.


Assuntos
Talassemia , Talassemia beta , Pré-Escolar , Hemoglobinas , Humanos , Talassemia/genética , Talassemia beta/genética
5.
Sci Rep ; 10(1): 72, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919453

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of end-stage renal failure in humans and results from germline mutations in PKD1 or PKD2. Despite the recent approval of tolvaptan, safer and more effective alternative drugs are clearly needed to slow disease progression. As a first step in drug discovery, we conducted an unbiased chemical screen on zebrafish pkd2 mutant embryos using two publicly available compound libraries (Spectrum, PKIS) totalling 2,367 compounds to identify novel treatments for ADPKD. Using dorsal tail curvature as the assay readout, three major chemical classes (steroids, coumarins, flavonoids) were identified from the Spectrum library as the most promising candidates to be tested on human PKD1 cystic cells. Amongst these were an androgen, 5α-androstane 3,17-dione, detected as the strongest enhancer of the pkd2 phenotype but whose effect was found to be independent of the canonical androgen receptor pathway. From the PKIS library, we identified several ALK5 kinase inhibitors as strong suppressors of the pkd2 tail phenotype and in vitro cyst expansion. In summary, our results identify ALK5 and non-canonical androgen receptors as potential therapeutic targets for further evaluation in drug development for ADPKD.


Assuntos
Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Canais de Cátion TRPP/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/metabolismo , Apoptose/efeitos dos fármacos , Cães , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Células Madin Darby de Rim Canino , Fenótipo , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptores Androgênicos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Canais de Cátion TRPP/deficiência , Canais de Cátion TRPP/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo
6.
Methods Cell Biol ; 138: 497-523, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28129856

RESUMO

Oxygen is a central molecule in the development of multicellular life, allowing efficient energy generation. Inadequate oxygen supply requires rapid adaptations to prevent cellular damage and the hypoxia-inducible factor (HIF) pathway plays a central role in this adaptation. Numerous diseases and disease processes are influenced by hypoxia and the HIF pathway. One component, von Hippel Lindau (VHL), is a well-known tumor suppressor, which acts at least in part via regulating HIF signaling. The zebrafish has become a central vertebrate model organism in which developmental and disease processes can be studied. In this review, we have tried to bring together knowledge on the HIF/hypoxic signaling pathway in zebrafish, including what is known on VHL functions.


Assuntos
Fator 1 Induzível por Hipóxia/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Peixe-Zebra/genética , Doença de von Hippel-Lindau/genética , Animais , Modelos Animais de Doenças , Humanos , Oxigênio/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/metabolismo , Peixe-Zebra/genética , Doença de von Hippel-Lindau/patologia
7.
J Cell Biol ; 154(3): 511-23, 2001 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-11481346

RESUMO

The localization of Oskar at the posterior pole of the Drosophila oocyte induces the assembly of the pole plasm and therefore defines where the abdomen and germ cells form in the embryo. This localization is achieved by the targeting of oskar mRNA to the posterior and the localized activation of its translation. oskar mRNA seems likely to be actively transported along microtubules, since its localization requires both an intact microtubule cytoskeleton and the plus end-directed motor kinesin I, but nothing is known about how the RNA is coupled to the motor. Here, we describe barentsz, a novel gene required for the localization of oskar mRNA. In contrast to all other mutations that disrupt this process, barentsz-null mutants completely block the posterior localization of oskar mRNA without affecting bicoid and gurken mRNA localization, the organization of the microtubules, or subsequent steps in pole plasm assembly. Surprisingly, most mutant embryos still form an abdomen, indicating that oskar mRNA localization is partially redundant with the translational control. Barentsz protein colocalizes to the posterior with oskar mRNA, and this localization is oskar mRNA dependent. Thus, Barentsz is essential for the posterior localization of oskar mRNA and behaves as a specific component of the oskar RNA transport complex.


Assuntos
Proteínas de Drosophila , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Polaridade Celular/fisiologia , Clonagem Molecular , Drosophila , Feminino , Proteínas de Insetos/análise , Masculino , Microtúbulos/fisiologia , Dados de Sequência Molecular , Mutação/fisiologia , Oócitos/citologia , Oócitos/fisiologia , Oogênese/fisiologia , Fenótipo , Polimorfismo de Fragmento de Restrição , RNA Mensageiro/metabolismo , Recombinação Genética/fisiologia , Homologia de Sequência de Aminoácidos
8.
Dev Biol ; 219(2): 350-63, 2000 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10694427

RESUMO

The floor plate is a morphologically distinct structure of epithelial cells situated along the midline of the ventral spinal cord in vertebrates. It is a source of guidance molecules directing the growth of axons along and across the midline of the neural tube. In the zebrafish, the floor plate is about three cells wide and composed of cuboidal cells. Two cell populations can be distinguished by the expression patterns of several marker genes, including sonic hedgehog (shh) and the fork head-domain gene fkd4: a single row of medial floor plate (MFP) cells, expressing both shh and fkd4, is flanked by rows of lateral floor plate (LFP) cells that express fkd4 but not shh. Systematic mutant searches in zebrafish embryos have identified a number of genes, mutations in which visibly reduce the floor plate. In these mutants either the MFP or the LFP cells are absent, as revealed by the analysis of the shh and fkd4 expression patterns. MFP cells are absent, but LFP cells are present, in mutants of cyclops, one-eyed pinhead, and schmalspur, whose development of midline structures is affected. LFP cells are absent, but MFP cells are present, in mutants of four genes, sonic you, you, you-too, and chameleon, collectively called the you-type genes. This group of mutants also shows defects in patterning of the paraxial mesoderm, causing U- instead of V-shaped somites. One of the you-type genes, sonic you, was recently shown to encode the zebrafish Shh protein, suggesting that the you-type genes encode components of the Shh signaling pathway. It has been shown previously that in the zebrafish shh is required for the induction of LFP cells, but not for the development of MFP cells. This conclusion is supported by the finding that injection of shh RNA causes an increase in the number of LFP, but not MFP cells. Embryos mutant for iguana, detour, and umleitung share the lack of LFP cells with you-type mutants while somite patterning is not severely affected. In mutants that fail to develop a notochord, MFP cells may be present, but are always surrounded by LFP cells. These data indicate that shh, expressed in the notochord and/or the MFP cells, induces the formation of LFP cells. In embryos doubly mutant for cyclops (cyc) and sonic you (syu) both LFP and MFP cells are deleted. The number of primary motor neurons is strongly reduced in cyc;syu double mutants, while almost normal in single mutants, suggesting that the two different pathways have overlapping functions in the induction of primary motor neurons.


Assuntos
Medula Espinal/citologia , Medula Espinal/embriologia , Transativadores , Peixe-Zebra/embriologia , Animais , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Hibridização In Situ , Camundongos , Neurônios Motores/citologia , Mutação , Notocorda/citologia , Notocorda/embriologia , Proteínas/genética , Especificidade da Espécie , Peixe-Zebra/genética
9.
Curr Opin Genet Dev ; 9(4): 396-404, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10449356

RESUMO

Recent work on Drosophila oogenesis has begun to reveal how the first asymmetries in development arise and how these relate to the later events that localise the positional cues which define the embryonic axes. The Cadherin-dependent positioning of the oocyte creates an anterior-posterior polarity that is transmitted to the embryo through the localisation and localised translation of bicoid, oskar, and nanos mRNA. In contrast, dorsal-ventral polarity arises from the random migration of the nucleus to the anterior of the oocyte, where it determines where gurken mRNA is translated and localised. Gurken signalling then defines the embryonic dorsal-ventral axis by restricting pipe expression to the ventral follicle cells, where Pipe regulates the production of an unidentified cue that activates the Toll signalling pathway.


Assuntos
Polaridade Celular , Drosophila/embriologia , Oogênese , Animais , Drosophila/citologia , Drosophila/genética , Mutação , Oócitos
11.
Mech Dev ; 76(1-2): 101-15, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9767138

RESUMO

The role of zebrafish hedgehog genes in branchiomotor neuron development was analyzed by examining mutations that affect the expression of the hedgehog genes and by overexpressing these genes in embryos. In cyclops mutants, reduction in sonic hedgehog (shh) expression, and elimination of tiggy-winkle hedgehog (twhh) expression, correlated with reductions in branchiomotor neuron populations. Furthermore, branchiomotor neurons were restored in cyclops mutants when shh or twhh was overexpressed. These results suggest that Shh and/or Twhh play an important role in the induction of branchiomotor neurons in vivo. In sonic-you (syu) mutants, where Shh activity was reduced or eliminated due to mutations in shh, branchiomotor neurons were reduced in number in a rhombomere-specific fashion, but never eliminated. Similarly, spinal motor neurons were reduced, but not eliminated, in syu mutants. These results demonstrate that Shh is not solely responsible for inducing branchiomotor and spinal motor neurons, and suggest that Shh and Twhh may function as partially redundant signals for motor neuron induction in zebrafish.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurônios/fisiologia , Proteínas/genética , Transativadores , Peixe-Zebra/embriologia , Animais , Região Branquial/inervação , Núcleo Celular/patologia , Embrião não Mamífero , Indução Embrionária , Proteínas Hedgehog , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios Motores/fisiologia , Mutação , Sistema Nervoso/embriologia , Proteínas/metabolismo , Rombencéfalo/embriologia , Rombencéfalo/patologia , Medula Espinal , Fator de Crescimento Transformador beta/genética , Proteínas de Peixe-Zebra
12.
Dev Genet ; 23(1): 65-76, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9706695

RESUMO

Segmentation in the vertebrate embryo is evident within the paraxial mesoderm in the form of somites, which are repeated structures that give rise to the vertebrae and muscle of the trunk and tail. In the zebrafish, our genetic screen identified two groups of mutants that affect somite formation and pattern. Mutations of one class, the fss-type mutants, disrupt the formation of the anterior-posterior somite boundaries during somitogenesis. However, segmentation within the paraxial mesoderm is not completely eliminated in these mutants. Irregular somite boundaries form later during embryogenesis and, strikingly, the vertebrae are not fused. Here, we show that formation of the irregular somite boundaries in these mutants is dependent upon the activity of a second group of genes, the you-type genes, which include sonic you, the zebrafish homologue of the Drosophila segment polarity gene, sonic hedgehog. Further to characterize the defects caused by the fss-type mutations, we examined their effects on the expression of her1, a zebrafish homologue of the Drosophila pair-rule gene hairy. In wild-type embryos, her1 is expressed in a dynamic, repeating pattern, remarkably similar to that of its Drosophila and Tribolium counterparts, suggesting that a pair-rule mechanism also functions in the segmentation of the vertebrate paraxial mesoderm. We have found that the fss-type mutants have abnormal pair-rule patterning. Although a her1 mutant could not be identified, analysis of a double mutant that abolishes most her1 expression suggests that a her1 mutant may not display a pair-rule phenotype analogous to the hairy phenotype observed in Drosophila. Cumulatively, our data indicate that zebrafish homologues of both the Drosophila segment polarity genes and pair-rule genes are involved in segmenting the paraxial mesoderm. However, both the relationship between these two groups of genes within the genetic heirarchy governing segmentation and the precise roles that they play during segmentation likely differ significantly between the two organisms.


Assuntos
Padronização Corporal/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Ligação Genética , Mutação , Fenótipo , Somitos/citologia , Especificidade da Espécie
13.
Development ; 125(15): 2983-93, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9655820

RESUMO

Sonic hedgehog (Shh) is a secreted protein that is involved in the organization and patterning of several tissues in vertebrates. We show that the zebrafish sonic-you (syu) gene, a member of a group of five genes required for somite patterning, is encoding Shh. Embryos mutant for a deletion of syu display defects in patterning of the somites, the lateral floor plate cells, the pectoral fins, the axons of motorneurons and the retinal ganglion cells. In contrast to mouse embryos lacking Shh activity, syu mutant embryos do form medial floor plate cells and motorneurons. Since ectopic overexpression of shh in zebrafish embryos does not induce ectopic medial floor plate cells, we conclude that shh is neither required nor sufficient to induce this cell type in the zebrafish.


Assuntos
Indução Embrionária , Sistema Nervoso/embriologia , Proteínas/metabolismo , Somitos , Transativadores , Peixe-Zebra/embriologia , Animais , Axônios , Padronização Corporal , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/biossíntese , Olho/embriologia , Proteínas do Olho , Teste de Complementação Genética , Proteínas Hedgehog , Proteínas de Homeodomínio/biossíntese , Músculos/citologia , Mutação , Malformações do Sistema Nervoso , Fator de Transcrição PAX2 , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Sinais Direcionadores de Proteínas/genética , Splicing de RNA , Proteínas Repressoras , Células Ganglionares da Retina , Análise de Sequência de DNA , Transdução de Sinais , Células-Tronco , Fatores de Transcrição/biossíntese , Proteínas de Peixe-Zebra
14.
Mol Cell Neurosci ; 11(4): 194-205, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9675051

RESUMO

Netrins, a family of growth cone guidance molecules, are expressed both in the ventral neural tube and in subsets of mesodermal cells. In an effort to better understand the regulation of netrins, we examined the expression of netrin-1a in mutant cyclops, no tail, and floating head zebrafish embryos, in which axial midline structures are perturbed. Netrin-1a expression requires signals present in notochord and floor plate cells. In the myotome, but not the neural tube, netrin-1a expression requires sonic hedgehog. In embryos lacking sonic hedgehog, the sonic-you locus, netrin-1a expression is reduced or absent in the myotomes but present in the neural tube. Embryos lacking sonic hedgehog express tiggy-winkle hedgehog in the floor plate, suggesting that, in the neural tube, tiggy-winkle hedgehog can compensate for the lack of sonic hedgehog in inducing netrin-1a expression. Ectopic expression of sonic hedgehog, tiggy-winkle hedgehog, or echidna hedgehog induces ectopic netrin-1a expression in the neural tube, and ectopic expression of sonic hedgehog or tiggy-winkle hedgehog, but not echidna hedgehog, induces ectopic netrin-1a expression in somites. These data demonstrate that in vertebrates netrin expression is regulated by Hedgehog signaling.


Assuntos
Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Crescimento Neural/biossíntese , Fatores de Crescimento Neural/fisiologia , Somitos/metabolismo , Transativadores , Animais , Blastômeros/metabolismo , Sistema Nervoso Central/embriologia , Embrião não Mamífero/anormalidades , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Desenvolvimento Embrionário , Cabeça/anormalidades , Cabeça/embriologia , Proteínas Hedgehog , Hibridização In Situ , Morfogênese/genética , Fatores de Crescimento Neural/genética , Netrina-1 , Notocorda/fisiologia , Proteínas/genética , Proteínas/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Cauda/anormalidades , Cauda/embriologia , Proteínas Supressoras de Tumor , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra
15.
Development ; 124(21): 4373-82, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9334285

RESUMO

The first evident break in left-right symmetry of the primitive zebrafish heart tube is the shift in pattern of BMP4 expression from radially symmetric to left-predominant. The midline heart tube then 'jogs' to the left and subsequently loops to the right. We examined 279 mutations, affecting more than 200 genes, and found 21 mutations that perturb this process. Some cause BMP4 to remain radially symmetric. Others randomize the asymmetric BMP4 pattern. Retention of BMP4 symmetry is associated with failure to jog: right-predominance of the BMP4 pattern is associated with reversal of the direction of jogging and looping. Raising BMP4 diffusely throughout the heart, via sonic hedgehog injection, or the blocking of its action by injection of a dominant negative BMP4 receptor, prevent directional jogging or looping. The genes crucial to directing cardiac asymmetry include a subset of those needed for patterning the dorsoventral axis and for notochord and ventral spinal cord development. Thus, the pattern of cardiac BMP4 appears to be in the pathway by which the heart interprets lateralizing signals from the midline.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Coração/embriologia , Peixe-Zebra/embriologia , Animais , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Miocárdio/metabolismo , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra
16.
Development ; 123: 1-36, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007226

RESUMO

In a large-scale screen, we isolated mutants displaying a specific visible phenotype in embryos or early larvae of the zebrafish, Danio rerio. Males were mutagenized with ethylnitrosourea (ENU) and F2 families of single pair matings between sibling F1 fish, heterozygous for a mutagenized genome, were raised. Egg lays were obtained from several crosses between F2 siblings, resulting in scoring of 3857 mutagenized genomes. F3 progeny were scored at the second, third and sixth day of development, using a stereomicroscope. In a subsequent screen, fixed embryos were analyzed for correct retinotectal projection. A total of 4264 mutants were identified. Two thirds of the mutants displaying rather general abnormalities were eventually discarded. We kept and characterized 1163 mutants. In complementation crosses performed between mutants with similar phenotypes, 894 mutants have been assigned to 372 genes. The average allele frequency is 2.4. We identified genes involved in early development, notochord, brain, spinal cord, somites, muscles, heart, circulation, blood, skin, fin, eye, otic vesicle, jaw and branchial arches, pigment pattern, pigment formation, gut, liver, motility and touch response. Our collection contains alleles of almost all previously described zebrafish mutants. From the allele frequencies and other considerations we estimate that the 372 genes defined by the mutants probably represent more than half of all genes that could have been discovered using the criteria of our screen. Here we give an overview of the spectrum of mutant phenotypes obtained, and discuss the limits and the potentials of a genetic saturation screen in the zebrafish.


Assuntos
Genes , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Cruzamentos Genéticos , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Teste de Complementação Genética , Masculino , Mutagênese , Fenótipo , Peixe-Zebra/crescimento & desenvolvimento
17.
Development ; 123: 47-55, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007228

RESUMO

Epiboly, the enveloping of the yolk cell by the blastoderm, is the first zebrafish morphogenetic movement. We isolated four mutations that affect epiboly: half baked, avalanche, lawine and weg. Homozygous mutant embryos arrest the vegetal progress of the deep cells of the blastoderm; only the yolk syncytial layer of the yolk cell and the enveloping layer of the blastoderm reach the vegetal pole of the embryo. The mutations half baked, avalanche and lawine produce a novel dominant effect, termed a zygotic-maternal dominant effect: heterozygous embryos produced from heterozygous females slow down epiboly and accumulate detached cells over the neural tube; a small fraction of these mutant individuals are viable. Heterozygous embryos produced from heterozygous males crossed to homozygous wild-type females complete epiboly normally and are completely viable. Additionally, embryos heterozygous for half baked have an enlarged hatching gland, a partial dominant phenotype. The phenotypes of these mutants demonstrate that, for the spreading of cells during epiboly, the movement of the deep cells of the blastoderm require the function of genes that are not necessary for the movement of the enveloping layer or the yolk cell. Furthermore, the dominant zygotic-maternal effect phenotypes illustrate the maternal and zygotic interplay of genes that orchestrate the early cell movements of the zebrafish.


Assuntos
Fase de Clivagem do Zigoto/fisiologia , Mutação , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Movimento Celular/genética , Sobrevivência Celular/genética , Fase de Clivagem do Zigoto/citologia , Fase de Clivagem do Zigoto/transplante , Gema de Ovo/fisiologia , Feminino , Teste de Complementação Genética , Homozigoto , Fenótipo , Zigoto/fisiologia
18.
Development ; 123: 57-66, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007229

RESUMO

This report describes mutants of the zebrafish having phenotypes causing a general arrest in early morphogenesis. These mutants identify a group of loci making up about 20% of the loci identified by mutants with visible morphological phenotypes within the first day of development. There are 12 Class I mutants, which fall into 5 complementation groups and have cells that lyse before morphological defects are observed. Mutants at three loci, speed bump, ogre and zombie, display abnormal nuclei. The 8 Class II mutants, which fall into 6 complementation groups, arrest development before cell lysis is observed. These mutants seemingly stop development in the late segmentation stages, and maintain a body shape similar to a 20 hour embryo. Mutations in speed bump, ogre, zombie, specter, poltergeist and troll were tested for cell lethality by transplanting mutant cells into wild-type hosts. With poltergeist, transplanted mutant cells all survive. The remainder of the mutants tested were autonomously but conditionally lethal: mutant cells, most of which lyse, sometimes survive to become notochord, muscles, or, in rare cases, large neurons, all cell types which become postmitotic in the gastrula. Some of the genes of the early arrest group may be necessary for progression though the cell cycle; if so, the survival of early differentiating cells may be based on having their terminal mitosis before the zygotic requirement for these genes.


Assuntos
Ciclo Celular/genética , Mutagênese , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Embrião não Mamífero/citologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Genes , Masculino , Mitose/genética , Fenótipo
19.
Development ; 123: 81-93, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007231

RESUMO

We identified 6 genes that are essential for specifying ventral regions of the early zebrafish embryo. Mutations in these genes cause an expansion of structures normally derived from dorsal-lateral regions of the blastula at the expense of ventrally derived structures. A series of phenotypes of varied strengths is observed with different alleles of these mutants. The weakest phenotype is a reduction in the ventral tail fin, observed as a dominant phenotype of swirl, piggytail, and somitabun and a recessive phenotype of mini fin, lost-a-fin and some piggytail alleles. With increasing phenotypic strength, the blood and pronephric anlagen are also reduced or absent, while the paraxial mesoderm and anterior neuroectoderm is progressively expanded. In the strong phenotypes, displayed hy homozygous embryos of snailhouse, swirl and somitabun, the somites circle around the embryo and the midbrain region is expanded laterally. Several mutations in this group of genes are semidominant as well as recessive indicating a strong dosage sensitivity of the processes involved. Mutations in the piggytail gene display an unusual dominance that depends on both a maternal and zygotic heterozygous genotype, while somitabun is a fully penetrant dominant maternal-effect mutation. The similar and overlapping phenotypes of mutants of the 6 genes identified suggest that they function in a common pathway, which begins in oogenesis, but also depends on factors provided after the onset of zygotic transcription, presumably during blastula stages. This pathway provides ventral positional information, counteracting the dorsalizing instructions of the organizer, which is localized in the dorsal shield.


Assuntos
Padronização Corporal/genética , Genes , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Ectoderma/fisiologia , Embrião não Mamífero/anatomia & histologia , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Dominantes , Variação Genética , Masculino , Mesoderma/metabolismo , Mutação , Fenótipo , Peixe-Zebra/anatomia & histologia , Zigoto/crescimento & desenvolvimento
20.
Development ; 123: 95-102, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007232

RESUMO

We describe two genes, dino and mercedes, which are required for the organization of the zebrafish body plan. In dino mutant embryos, the tail is enlarged at the expense of the head and the anterior region of the trunk. The altered expression patterns of various marker genes reveal that, with the exception of the dorsal most marginal zone, all regions of the early dino mutant embryo acquire more ventral fates. These alterations are already apparent before the onset of gastrulation. mercedes mutant embryos show a similar but weaker phenotype, suggesting a role in the same patterning processes. The phenotypes suggests that dino and mercedes are required for the establishment of dorsal fates in both the marginal and the animal zone of the early gastrula embryo. Their function in the patterning of the ventrolateral mesoderm and the induction of the neuroectoderm is similar to the function of the Spemann organizer in the amphibian embryo.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Animais , Desenvolvimento Embrionário , Gástrula/fisiologia , Mesoderma/fisiologia , Mutagênese , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...