Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Sci Transl Med ; 16(765): eadl1997, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292802

RESUMO

The development of the human immune system lasts for several years after birth. The impact of this maturation phase on the quality of adaptive immunity and the acquisition of immunological memory after infection at a young age remains incompletely defined. Here, using an antigen-reactive T cell (ARTE) assay and multidimensional flow cytometry, we profiled circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-reactive CD3+CD4+CD154+ T cells in children and adults before infection, during infection, and 11 months after infection, stratifying children into separate age groups and adults according to disease severity. During SARS-CoV-2 infection, children younger than 5 years old displayed a lower antiviral CD4+ T cell response, whereas children older than 5 years and adults with mild disease had, quantitatively and phenotypically, comparable virus-reactive CD4+ T cell responses. Adults with severe disease mounted a response characterized by higher frequencies of virus-reactive proinflammatory and cytotoxic T cells. After SARS-CoV-2 infection, preschool-age children not only maintained neutralizing SARS-CoV-2-reactive antibodies postinfection comparable to adults but also had phenotypically distinct memory T cells displaying high inflammatory features and properties associated with migration toward inflamed sites. Moreover, preschool-age children had markedly fewer circulating virus-reactive memory B cells compared with the other cohorts. Collectively, our results reveal unique facets of antiviral immunity in humans at a young age and indicate that the maturation of adaptive responses against SARS-CoV-2 toward an adult-like profile occurs in a progressive manner.


Assuntos
Linfócitos T CD4-Positivos , COVID-19 , Células B de Memória , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/virologia , Pré-Escolar , SARS-CoV-2/imunologia , Linfócitos T CD4-Positivos/imunologia , Adulto , Células B de Memória/imunologia , Criança , Células T de Memória/imunologia , Masculino , Memória Imunológica , Feminino , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Pessoa de Meia-Idade , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Adulto Jovem
2.
Protein Sci ; 33(9): e5151, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39167040

RESUMO

Insulin-regulated aminopeptidase (IRAP) is an enzyme with important biological functions and the target of drug-discovery efforts. We combined in silico screening with a medicinal chemistry optimization campaign to discover a nanomolar inhibitor of IRAP based on a pyrazolylpyrimidine scaffold. This compound displays an excellent selectivity profile versus homologous aminopeptidases, and kinetic analysis suggests it utilizes an uncompetitive mechanism of action when inhibiting the cleavage of a typical dipeptidic substrate. Surprisingly, the compound is a poor inhibitor of the processing of the physiological cyclic peptide substrate oxytocin and a 10mer antigenic epitope precursor but displays a biphasic inhibition profile for the trimming of a 9mer antigenic peptide. While the compound reduces IRAP-dependent cross-presentation of an 8mer epitope in a cellular assay, it fails to block in vitro trimming of select epitope precursors. To gain insight into the mechanism and basis of this unusual selectivity for this inhibitor, we solved the crystal structure of its complex with IRAP. The structure indicated direct zinc(II) engagement by the pyrazolylpyrimidine scaffold and revealed that the compound binds to an open conformation of the enzyme in a pose that should block the conformational transition to the enzymatically active closed conformation previously observed for other low-molecular-weight inhibitors. This compound constitutes the first IRAP inhibitor targeting the active site that utilizes a conformation-specific mechanism of action, provides insight into the intricacies of the IRAP catalytic cycle, and highlights a novel approach to regulating IRAP activity by blocking its conformational rearrangements.


Assuntos
Cistinil Aminopeptidase , Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/química , Cistinil Aminopeptidase/metabolismo , Humanos , Cristalografia por Raios X , Especificidade por Substrato , Pirimidinas/química , Pirimidinas/farmacologia , Modelos Moleculares , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Conformação Proteica
3.
Br J Pharmacol ; 181(19): 3610-3626, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38812293

RESUMO

BACKGROUND AND PURPOSE: Nonalcoholic fatty liver disease refers to liver pathologies, ranging from steatosis to steatohepatitis, with fibrosis ultimately leading to cirrhosis and hepatocellular carcinoma. Although several mechanisms have been suggested, including insulin resistance, oxidative stress, and inflammation, its pathophysiology remains imperfectly understood. Over the last decade, a dysfunctional unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress emerged as one of the multiple driving factors. In parallel, growing evidence suggests that insulin-degrading enzyme (IDE), a highly conserved and ubiquitously expressed metallo-endopeptidase originally discovered for its role in insulin decay, may regulate ER stress and UPR. EXPERIMENTAL APPROACH: We investigated, by genetic and pharmacological approaches, in vitro and in vivo, whether IDE modulates ER stress-induced UPR and lipid accumulation in the liver. KEY RESULTS: We found that IDE-deficient mice display higher hepatic triglyceride content along with higher inositol-requiring enzyme 1 (IRE1) pathway activation. Upon induction of ER stress by tunicamycin or palmitate in vitro or in vivo, pharmacological inhibition of IDE, using its inhibitor BDM44768, mainly exacerbated ER stress-induced IRE1 activation and promoted lipid accumulation in hepatocytes, effects that were abolished by the IRE1 inhibitors 4µ8c and KIRA6. Finally, we identified that IDE knockout promotes lipolysis in adipose tissue and increases hepatic CD36 expression, which may contribute to steatosis. CONCLUSION AND IMPLICATIONS: These results unravel a novel role for IDE in the regulation of ER stress and development of hepatic steatosis. These findings pave the way to innovative strategies modulating IDE to treat metabolic diseases.


Assuntos
Estresse do Retículo Endoplasmático , Insulisina , Metabolismo dos Lipídeos , Fígado , Resposta a Proteínas não Dobradas , Animais , Humanos , Masculino , Camundongos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Endorribonucleases/antagonistas & inibidores , Insulisina/metabolismo , Insulisina/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Resposta a Proteínas não Dobradas/efeitos dos fármacos
4.
iScience ; 27(6): 109929, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799566

RESUMO

Tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with variable demand for insulin. Here, we asked how insulin-degrading enzyme (IDE) affects beta cell adaptation to metabolic and immune stress. C57BL/6 and autoimmune non-obese diabetic (NOD) mice lacking IDE were exposed to proteotoxic, metabolic, and immune stress. IDE deficiency induced a low-level UPR with islet hypertrophy at the steady state, rapamycin-sensitive beta cell proliferation enhanced by proteotoxic stress, and beta cell decompensation upon high-fat feeding. IDE deficiency also enhanced the UPR triggered by proteotoxic stress in human EndoC-ßH1 cells. In Ide-/- NOD mice, islet inflammation specifically induced regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. These findings establish a role of IDE in islet cell protein homeostasis, demonstrate how its absence induces metabolic decompensation despite beta cell proliferation, and UPR-independent islet regeneration in the presence of inflammation.

6.
bioRxiv ; 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37503145

RESUMO

Appropriate tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with highly variable demand for insulin synthesis. An efficient UPR ensures a sufficient beta cell mass and secretory output but can also affect beta cell resilience to autoimmune aggression. The factors regulating protein homeostasis in the face of metabolic and immune challenges are insufficiently understood. We examined beta cell adaptation to stress in mice deficient for insulin-degrading enzyme (IDE), a ubiquitous protease with high affinity for insulin and genetic association with type 2 diabetes. IDE deficiency induced a low-level UPR in both C57BL/6 and autoimmune non-obese diabetic (NOD) mice, associated with rapamycin-sensitive beta cell proliferation strongly enhanced by proteotoxic stress. Moreover, in NOD mice, IDE deficiency protected from spontaneous diabetes and triggered an additional independent pathway, conditional on the presence of islet inflammation but inhibited by proteotoxic stress, highlighted by strong upregulation of regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. Our findings establish a key role of IDE in islet cell protein homeostasis, identify a link between low-level UPR and proliferation, and reveal an UPR-independent anti-inflammatory islet cell response uncovered in the absence of IDE of potential interest in autoimmune diabetes.

7.
Biomolecules ; 13(6)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37371470

RESUMO

Insulin-degrading enzyme (IDE) is a highly conserved metalloprotease that is mainly localized in the cytosol. Although IDE can degrade insulin and some other low molecular weight substrates efficiently, its ubiquitous expression suggests additional functions supported by experimental findings, such as a role in stress responses and cellular protein homeostasis. The translation of a long full-length IDE transcript has been reported to result in targeting to mitochondria, but the role of IDE in this compartment is unknown. To obtain initial leads on the function of IDE in mitochondria, we used a proximity biotinylation approach to identify proteins interacting with wild-type and protease-dead IDE targeted to the mitochondrial matrix. We find that IDE interacts with multiple mitochondrial ribosomal proteins as well as with proteins involved in the synthesis and assembly of mitochondrial complex I and IV. The mitochondrial interactomes of wild type and mutant IDE are highly similar and do not reveal any likely proteolytic IDE substrates. We speculate that IDE could adopt similar additional non-proteolytic functions in mitochondria as in the cytosol, acting as a chaperone and contributing to protein homeostasis and stress responses.


Assuntos
Transporte de Elétrons , Insulisina , Ribossomos Mitocondriais , Transporte de Elétrons/fisiologia , Insulina/metabolismo , Insulisina/metabolismo , Mitocôndrias/metabolismo , Ribossomos Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo , Humanos
8.
9.
Biomed Pharmacother ; 163: 114813, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150031

RESUMO

BACKGROUND: Lipin-1 deficiency is a life-threatening disease that causes severe rhabdomyolysis (RM) and chronic symptoms associated with oxidative stress. In the absence of treatment, Hydroxychloroquine sulfate (HCQ) was administered to patients off label use on a compassionate basis in order to improve their physical conditions. METHODS: Eleven patients with LPIN1 mutations were treated with HCQ. Clinical and biological efficacy and tolerance were assessed, including pain and quality of life, physical capacities, cardiopulmonary parameters, creatine kinase levels and plasma proinflammatory cytokines. To explore a dose-dependent effect of HCQ, primary myoblasts from 4 patients were incubated with various HCQ concentrations in growth medium (GM) or during starvation (EBSS medium) to investigate autophagy and oxidative stress. FINDINGS: Under HCQ treatment, patient physical capacities improved. Abnormal cardiac function and peripheral muscle adaptation to exercise were normalized. However, two patients who had the highest mean blood HCQ concentrations experienced RM. We hypothesized that HCQ exerts deleterious effects at high concentrations by blocking autophagy, and beneficial effects on oxidative stress at low concentrations. We confirmed in primary myoblasts from 4 patients that high in vitro HCQ concentration (10 µM) but not low concentration (1 µM and 0.1 µM) induced autophagy blockage by modifying endolysosomal pH. Low HCQ concentration (1 µM) prevented reactive oxygen species (ROS) and oxidized DNA accumulation in myoblasts during starvation. INTERPRETATION: HCQ improves the condition of patients with lipin-1 deficiency, but at low concentrations. In vitro, 1 µM HCQ decreases oxidative stress in myoblasts whereas higher concentrations have a deleterious effect by blocking autophagy.


Assuntos
Hidroxicloroquina , Qualidade de Vida , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Citocinas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fosfatidato Fosfatase/genética
10.
Semin Immunol ; 67: 101764, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37084655

RESUMO

The critical role of conventional dendritic cells in physiological cross-priming of immune responses to tumors and pathogens is widely documented and beyond doubt. However, there is ample evidence that a wide range of other cell types can also acquire the capacity to cross-present. These include not only other myeloid cells such as plasmacytoid dendritic cells, macrophages and neutrophils, but also lymphoid populations, endothelial and epithelial cells and stromal cells including fibroblasts. The aim of this review is to provide an overview of the relevant literature that analyzes each report cited for the antigens and readouts used, mechanistic insight and in vivo experimentation addressing physiological relevance. As this analysis shows, many reports rely on the exceptionally sensitive recognition of an ovalbumin peptide by a transgenic T cell receptor, with results that therefore cannot always be extrapolated to physiological settings. Mechanistic studies remain basic in most cases but reveal that the cytosolic pathway is dominant across many cell types, while vacuolar processing is most encountered in macrophages. Studies addressing physiological relevance rigorously remain exceptional but suggest that cross-presentation by non-dendritic cells may have significant impact in anti-tumor immunity and autoimmunity.


Assuntos
Apresentação de Antígeno , Apresentação Cruzada , Humanos , Linfócitos T CD8-Positivos , Células Dendríticas , Antígenos
11.
J Allergy Clin Immunol ; 151(6): 1595-1608.e6, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36708814

RESUMO

BACKGROUND: On activation, mast cells rapidly release preformed inflammatory mediators from large cytoplasmic granules via regulated exocytosis. This acute degranulation is followed by a late activation phase involving synthesis and secretion of cytokines, growth factors, and other inflammatory molecules via the constitutive pathway that remains ill defined. OBJECTIVE: We investigated the role for an insulin-responsive vesicle-like endosomal compartment, marked by insulin-regulated aminopeptidase (IRAP), in the secretion of TNF-α and IL-6 in mast cells and macrophages. METHODS: Murine knockout (KO) mouse models (IRAP-KO and kit-Wsh/sh) were used to study inflammatory disease models and to measure and mechanistically investigate cytokine secretion and degranulation in bone marrow-derived mast cells in vitro. RESULTS: IRAP-KO mice are protected from TNF-α-dependent kidney injury and inflammatory arthritis. In the absence of IRAP, TNF-α and IL-6 but not IL-10 fail to be efficiently secreted. Moreover, chemical targeting of IRAP endosomes reduced proinflammatory cytokine secretion. Mechanistically, impaired TNF-α export from the Golgi and reduced colocalization of vesicle-associated membrane protein (VAMP) 3-positive TNF-α transport vesicles with syntaxin 4 (aka Stx4) was observed in IRAP-KO mast cells, while VAMP8-dependent exocytosis of secretory granules was facilitated. CONCLUSION: IRAP plays a novel role in mast cell-mediated inflammation through the regulation of exocytic trafficking of cytokines.


Assuntos
Aminopeptidases , Citocinas , Camundongos , Animais , Insulina , Mastócitos , Fator de Necrose Tumoral alfa , Interleucina-6 , Inflamação
12.
Trends Immunol ; 44(2): 90-92, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36526581

RESUMO

The Black Death, a notorious devastating pandemic caused by Yersinia pestis infection during the 14th century, posed a formidable challenge to human immune defenses. A new article by Klunk et al. reports that a variant in an antigen-processing gene may have favored survival during the plague and may have undergone genomic selection in Europeans at unprecedented speed.


Assuntos
Peste , Yersinia pestis , Humanos , Peste/epidemiologia , Peste/genética , Peste/história , Yersinia pestis/genética , Genômica , Pandemias , Apresentação de Antígeno
13.
Front Immunol ; 13: 1079913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466849

Assuntos
Biologia
14.
J Med Chem ; 65(14): 10098-10117, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35833347

RESUMO

The oxytocinase subfamily of M1 zinc aminopeptidases comprises emerging drug targets, including the ER-resident aminopeptidases 1 and 2 (ERAP1 and ERAP2) and insulin-regulated aminopeptidase (IRAP); however, reports on clinically relevant inhibitors are limited. Here we report a new synthetic approach of high diastereo- and regioselectivity for functionalization of the α-hydroxy-ß-amino acid scaffold of bestatin. Stereochemistry and mechanism of inhibition were investigated by a high-resolution X-ray crystal structure of ERAP1 in complex with a micromolar inhibitor. By exploring the P1 side-chain functionalities, we achieve significant potency and selectivity, and we report a cell-active, low-nanomolar inhibitor of IRAP with >120-fold selectivity over homologous enzymes. X-ray crystallographic analysis of IRAP in complex with this inhibitor suggest that interactions with the GAMEN loop is an unappreciated key determinant for potency and selectivity. Overall, our results suggest that α-hydroxy-ß-amino acid derivatives may constitute useful chemical tools and drug leads for this group of aminopeptidases.


Assuntos
Aminopeptidases , Insulina , Aminoácidos/farmacologia , Aminopeptidases/química , Cistinil Aminopeptidase , Leucina/análogos & derivados
15.
Bone Marrow Transplant ; 57(10): 1520-1530, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35794259

RESUMO

Primary immunodeficiencies (PID) are heterogeneous inborn errors of the immune system. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is curative and safe at the pediatric age but remains underperformed in adults. We report our experience on 32 consecutive adult patients with various PID including 17 (53%) with a combined immune deficiency, six (19%) with a disease of immune dysregulation and nine (28%) with a chronic granulomatous disease (CGD) who underwent an allo-HSCT between 2011 and 2020. The median age at transplant was 27 years (17-41). All assessable patients engrafted. The majority of patients received a fludarabine-Busulfan (FB) based regimen (FB2-3 in 16, FB4 in 12). Overall survival (OS) was 80.4% (100% for CGD and 74% for other PID patients) at 9 months and beyond (median follow-up 51.6 months). Six patients died, all in the first-year post-transplant. Cumulative incidences of grade II-IV acute GVHD/chronic GVHD were 18%/22%. Stem cell source, GVHD prophylaxis and conditioning intensity had no impact on OS. All surviving patients had over 90% donor chimerism, immune reconstitution, no sign of active PID related complications and were clinically improved. Allo-HSCT is effective in young adults PID patients with an acceptable toxicity and should be discussed in case of life-threatening PID.


Assuntos
Doença Enxerto-Hospedeiro , Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , Adolescente , Adulto , Bussulfano/uso terapêutico , Criança , Doença Enxerto-Hospedeiro/epidemiologia , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Granulomatosa Crônica/terapia , Humanos , Condicionamento Pré-Transplante , Adulto Jovem
16.
J Immunother Cancer ; 10(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35483744

RESUMO

BACKGROUND: Retrospective clinical trials reported a reduced local relapse rate, as well as improved overall survival after injection of local anesthetics during cancer surgery. Here, we investigated the anticancer effects of six local anesthetics used in clinical practice. RESULTS: In vitro, local anesthetics induced signs of cancer cell stress including inhibition of oxidative phosphorylation, and induction of autophagy as well as endoplasmic reticulum (ER) stress characterized by the splicing of X-box binding protein 1 (XBP1s) mRNA, cleavage of activating transcription factor 6 (ATF6), phosphorylation of eIF2α and subsequent upregulation of activating transcription factor 4 (ATF4). Both eIF2α phosphorylation and autophagy required the ER stress-relevant eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3, best known as PERK). Local anesthetics also activated two hallmarks of immunogenic cell death, namely, the release of ATP and high-mobility group box 1 protein (HMGB1), yet failed to cause the translocation of calreticulin (CALR) from the ER to the plasma membrane. In vivo, locally injected anesthetics decreased tumor growth and improved survival in several models of tumors established in immunocompetent mice. Systemic immunotherapy with PD-1 blockade or intratumoral injection of recombinant CALR protein, increased the antitumor effects of local anesthetics. Local anesthetics failed to induce antitumor effects in immunodeficient mice or against cancers unable to activate ER stress or autophagy due to the knockout of EIF2AK3/PERK or ATG5, respectively. Uncoupling agents that inhibit oxidative phosphorylation and induce autophagy and ER stress mimicked the immune-dependent antitumor effects of local anesthetics. CONCLUSION: Altogether, these results indicate that local anesthetics induce a therapeutically relevant pattern of immunogenic stress responses in cancer cells.


Assuntos
Anestésicos Locais , Neoplasias , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Anestésicos Locais/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Camundongos , Neoplasias/patologia , Estudos Retrospectivos
17.
Cell Rep ; 38(9): 110449, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235807

RESUMO

Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B∗27:05. We find that proteasomal activity generates multiple length variants of KK10 (4-14 amino acids), which bind TAP and HLA-B∗27:05. However, only epitope forms ≥8 amino acids evoke peptide length-specific and cross-reactive CTL responses. Structural analyses reveal that all epitope forms bind HLA-B∗27:05 via a conserved N-terminal motif, and competition experiments show that the truncated epitope forms outcompete immunogenic epitope forms for binding to HLA-B∗27:05. Common viral escape mutations abolish (L136M) or impair (R132K) production of KK10 and longer epitope forms. Peptide length influences how well the inhibitory NK cell receptor KIR3DL1 binds HLA-B∗27:05 peptide complexes and how intraepitope mutations affect this interaction. These results identify a viral escape mechanism from CTL and NK responses based on differential antigen processing and peptide competition.


Assuntos
Infecções por HIV , HIV-1 , Sequência de Aminoácidos , Aminoácidos , Apresentação de Antígeno , Epitopos de Linfócito T , Antígenos HLA-B/genética , Humanos , Peptídeos
18.
Neurol Genet ; 8(1): e648, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35079622

RESUMO

BACKGROUND AND OBJECTIVES: To determine common clinical and biological traits in 2 individuals with variants in ISCU and FDX2, displaying severe and recurrent rhabdomyolyses and lactic acidosis. METHODS: We performed a clinical characterization of 2 distinct individuals with biallelic ISCU or FDX2 variants from 2 separate families and a biological characterization with muscle and cells from those patients. RESULTS: The individual with FDX2 variants was clinically more affected than the individual with ISCU variants. Affected FDX2 individual fibroblasts and myoblasts showed reduced oxygen consumption rates and mitochondrial complex I and PDHc activities, associated with high levels of blood FGF21. ISCU individual fibroblasts showed no oxidative phosphorylation deficiency and moderate increase of blood FGF21 levels relative to controls. The severity of the FDX2 individual was not due to dysfunctional autophagy. Iron was excessively accumulated in ISCU-deficient skeletal muscle, which was accompanied by a downregulation of IRP1 and mitoferrin2 genes and an upregulation of frataxin (FXN) gene expression. This excessive iron accumulation was absent from FDX2 affected muscle and could not be correlated with variable gene expression in muscle cells. DISCUSSION: We conclude that FDX2 and ISCU variants result in a similar muscle phenotype, that differ in severity and skeletal muscle iron accumulation. ISCU and FDX2 are not involved in mitochondrial iron influx contrary to frataxin.

19.
Cell Rep Med ; 2(8): 100370, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467247

RESUMO

LPIN1 mutations are responsible for inherited recurrent rhabdomyolysis, a life-threatening condition with no efficient therapeutic intervention. Here, we conduct a bedside-to-bench-and-back investigation to study the pathophysiology of lipin1 deficiency. We find that lipin1-deficient myoblasts exhibit a reduction in phosphatidylinositol-3-phosphate close to autophagosomes and late endosomes that prevents the recruitment of the GTPase Armus, locks Rab7 in the active state, inhibits vesicle clearance by fusion with lysosomes, and alters their positioning and function. Oxidized mitochondrial DNA accumulates in late endosomes, where it activates Toll-like receptor 9 (TLR9) and triggers inflammatory signaling and caspase-dependent myolysis. Hydroxychloroquine blocks TLR9 activation by mitochondrial DNA in vitro and may attenuate flares of rhabdomyolysis in 6 patients treated. We suggest a critical role for defective clearance of oxidized mitochondrial DNA that activates TLR9-restricted inflammation in lipin1-related rhabdomyolysis. Interventions blocking TLR9 activation or inflammation can improve patient care in vivo.


Assuntos
Mitocôndrias/metabolismo , Fosfatidato Fosfatase/metabolismo , Rabdomiólise/patologia , Autofagossomos/metabolismo , Criança , Pré-Escolar , Cloroquina/farmacologia , DNA Mitocondrial/metabolismo , Endossomos/metabolismo , Feminino , Seguimentos , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Inflamação/patologia , Lisossomos/metabolismo , Masculino , Mioblastos/metabolismo , Fosfatidato Fosfatase/deficiência , Fosfatos de Fosfatidilinositol , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , proteínas de unión al GTP Rab7/metabolismo
20.
Elife ; 102021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037522

RESUMO

Spliced peptides present on tumor cells can help to mount an immune response, but algorithms offer limited help in predicting which ones actually exist and perform this role in vivo.


Assuntos
Epitopos de Linfócito T , Complexo de Endopeptidases do Proteassoma , Algoritmos , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA