Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(12): e0165923, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38092674

RESUMO

IMPORTANCE: Viruses play a crucial role in microbial ecosystems by liberating nutrients and regulating the growth of their hosts. These effects are governed by viral life history traits, i.e., by the traits determining viral reproduction and survival. Understanding these traits is essential to predicting viral effects, but measuring them is generally labor intensive. In this study, we present efficient methods to quantify the full life cycle of lytic viruses. We developed these methods for viruses infecting unicellular Chlorella algae but expect them to be applicable to other lytic viruses that can be quantified by flow cytometry. By making viral phenotypes accessible, our methods will support research into the diversity and ecological effects of microbial viruses.


Assuntos
Chlorella , Características de História de Vida , Phycodnaviridae , Vírus , Phycodnaviridae/genética , Ecossistema
2.
Microb Ecol ; 86(4): 2904-2909, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37650927

RESUMO

Chemotaxis is widespread across many taxa and often aids resource acquisition or predator avoidance. Species interactions can modify the degree of movement facilitated by chemotaxis. In this study, we investigated the influence of symbionts on Paramecium bursaria's chemotactic behavior toward chloroviruses. To achieve this, we performed choice experiments using chlorovirus and control candidate attractors (virus stabilization buffer and pond water). We quantified the movement of Paramecia grown with or without algal and viral symbionts toward each attractor. All Paramecia showed some chemotaxis toward viruses, but cells without algae and viruses showed the most movement toward viruses. Thus, the endosymbiotic algae (zoochlorellae) appeared to alter the movement of Paramecia toward chloroviruses, but it was not clear that ectosymbiotic viruses (chlorovirus) also had this effect. The change in behavior was consistent with a change in swimming speed, but a change in attraction remains possible. The potential costs and benefits of chemotactic movement toward chloroviruses for either the Paramecia hosts or its symbionts remain unclear.


Assuntos
Paramecium , Phycodnaviridae , Quimiotaxia , Simbiose
3.
Traffic ; 24(11): 533-545, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37578147

RESUMO

When the K+ channel-like protein Kesv from Ectocarpus siliculosus virus 1 is heterologously expressed in mammalian cells, it is sorted to the mitochondria. This targeting can be redirected to the endoplasmic reticulum (ER) by altering the codon usage in distinct regions of the gene or by inserting a triplet of hydrophobic amino acids (AAs) into the protein's C-terminal transmembrane domain (ct-TMD). Systematic variations in the flavor of the inserted AAs and/or its codon usage show that a positive charge in the inserted AA triplet alone serves as strong signal for mitochondria sorting. In cases of neutral AA triplets, mitochondria sorting are favored by a combination of hydrophilic AAs and rarely used codons; sorting to the ER exhibits the inverse dependency. This propensity for ER sorting is particularly high when a common codon follows a rarer one in the AA triplet; mitochondria sorting in contrast is supported by codon uniformity. Since parameters like positive charge, hydrophobic AAs, and common codons are known to facilitate elongation of nascent proteins in the ribosome the data suggest a mechanism in which local changes in elongation velocity and co-translational folding in the ct-TMD influence intracellular protein sorting.


Assuntos
Uso do Códon , Proteínas , Animais , Proteínas/metabolismo , Mitocôndrias/metabolismo , Transporte Proteico , Retículo Endoplasmático/metabolismo , Códon/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mamíferos/genética , Mamíferos/metabolismo
4.
Viruses ; 15(6)2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376640

RESUMO

Many chloroviruses replicate in Chlorella variabilis algal strains that are ex-endosymbionts isolated from the protozoan Paramecium bursaria, including the NC64A and Syngen 2-3 strains. We noticed that indigenous water samples produced a higher number of plaque-forming viruses on C. variabilis Syngen 2-3 lawns than on C. variabilis NC64A lawns. These observed differences led to the discovery of viruses that replicate exclusively in Syngen 2-3 cells, named Only Syngen (OSy) viruses. Here, we demonstrate that OSy viruses initiate infection in the restricted host NC64A by synthesizing some early virus gene products and that approximately 20% of the cells produce a small number of empty virus capsids. However, the infected cells did not produce infectious viruses because the cells were unable to replicate the viral genome. This is interesting because all previous attempts to isolate host cells resistant to chlorovirus infection were due to changes in the host receptor for the virus.


Assuntos
Chlorella , Paramecium , Phycodnaviridae , DNA Viral/genética , Phycodnaviridae/genética , Proteínas Virais/genética
5.
J Virol ; 97(5): e0027523, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37133447

RESUMO

Viruses can have large effects on the ecological communities in which they occur. Much of this impact comes from the mortality of host cells, which simultaneously alters microbial community composition and causes the release of matter that can be used by other organisms. However, recent studies indicate that viruses may be even more deeply integrated into the functioning of ecological communities than their effect on nutrient cycling suggests. In particular, chloroviruses, which infect chlorella-like green algae that typically occur as endosymbionts, participate in three types of interactions with other species. Chlororviruses (i) can lure ciliates from a distance, using them as a vector; (ii) depend on predators for access to their hosts; and (iii) get consumed as a food source by, at least, a variety of protists. Therefore, chloroviruses both depend on and influence the spatial structures of communities as well as the flows of energy through those communities, driven by predator-prey interactions. The emergence of these interactions are an eco-evolutionary puzzle, given the interdependence of these species and the many costs and benefits that these interactions generate.


Assuntos
Chlorella , Cadeia Alimentar , Phycodnaviridae , Evolução Biológica , Chlorella/virologia
6.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112891

RESUMO

Viruses face many challenges on their road to successful replication, and they meet those challenges by reprogramming the intracellular environment. Two major issues challenging Paramecium bursaria chlorella virus 1 (PBCV-1, genus Chlorovirus, family Phycodnaviridae) at the level of DNA replication are (i) the host cell has a DNA G+C content of 66%, while the virus is 40%; and (ii) the initial quantity of DNA in the haploid host cell is approximately 50 fg, yet the virus will make approximately 350 fg of DNA within hours of infection to produce approximately 1000 virions per cell. Thus, the quality and quantity of DNA (and RNA) would seem to restrict replication efficiency, with the looming problem of viral DNA synthesis beginning in only 60-90 min. Our analysis includes (i) genomics and functional annotation to determine gene augmentation and complementation of the nucleotide biosynthesis pathway by the virus, (ii) transcriptional profiling of these genes, and (iii) metabolomics of nucleotide intermediates. The studies indicate that PBCV-1 reprograms the pyrimidine biosynthesis pathway to rebalance the intracellular nucleotide pools both qualitatively and quantitatively, prior to viral DNA amplification, and reflects the genomes of the progeny virus, providing a successful road to virus infection.


Assuntos
Chlorella , Phycodnaviridae , DNA Viral/genética , DNA Viral/metabolismo , Nucleotídeos/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(1): e2215000120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574690

RESUMO

Viruses impact host cells and have indirect effects on ecosystem processes. Plankton such as ciliates can reduce the abundance of virions in water, but whether virus consumption translates into demographic consequences for the grazers is unknown. Here, we show that small protists not only can consume viruses they also can grow and divide given only viruses to eat. Moreover, the ciliate Halteria sp. foraging on chloroviruses displays dynamics and interaction parameters that are similar to other microbial trophic interactions. These results suggest that the effect of viruses on ecosystems extends beyond (and in contrast to) the viral shunt by redirecting energy up food chains.


Assuntos
Cadeia Alimentar , Vírus , Ecossistema , Plâncton , Eucariotos
8.
Nat Commun ; 13(1): 6476, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309542

RESUMO

Giant viruses are a large group of viruses that infect many eukaryotes. Although components that do not obey the overall icosahedral symmetry of their capsids have been observed and found to play critical roles in the viral life cycles, identities and high-resolution structures of these components remain unknown. Here, by determining a near-atomic-resolution, five-fold averaged structure of Paramecium bursaria chlorella virus 1, we unexpectedly found the viral capsid possesses up to five major capsid protein variants and a penton protein variant. These variants create varied capsid microenvironments for the associations of fibers, a vesicle, and previously unresolved minor capsid proteins. Our structure reveals the identities and atomic models of the capsid components that do not obey the overall icosahedral symmetry and leads to a model for how these components are assembled and initiate capsid assembly, and this model might be applicable to many other giant viruses.


Assuntos
Chlorella , Vírus Gigantes , Paramecium , Phycodnaviridae , Phycodnaviridae/genética , Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química
9.
Chem Rev ; 122(20): 15717-15766, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35820164

RESUMO

Viruses are a heterogeneous ensemble of entities, all sharing the need for a suitable host to replicate. They are extremely diverse, varying in morphology, size, nature, and complexity of their genomic content. Typically, viruses use host-encoded glycosyltransferases and glycosidases to add and remove sugar residues from their glycoproteins. Thus, the structure of the glycans on the viral proteins have, to date, typically been considered to mimick those of the host. However, the more recently discovered large and giant viruses differ from this paradigm. At least some of these viruses code for an (almost) autonomous glycosylation pathway. These viral genes include those that encode the production of activated sugars, glycosyltransferases, and other enzymes able to manipulate sugars at various levels. This review focuses on large and giant viruses that produce carbohydrate-processing enzymes. A brief description of those harboring these features at the genomic level will be discussed, followed by the achievements reached with regard to the elucidation of the glycan structures, the activity of the proteins able to manipulate sugars, and the organic synthesis of some of these virus-encoded glycans. During this progression, we will also comment on many of the challenging questions on this subject that remain to be addressed.


Assuntos
Vírus Gigantes , Vírus , Vírus Gigantes/metabolismo , Polissacarídeos/química , Glicosiltransferases/metabolismo , Glicoproteínas , Glicosídeo Hidrolases/metabolismo , Proteínas Virais , Açúcares
10.
Front Neurol ; 13: 821166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280283

RESUMO

Background: Genetically polymorphic Superoxide Dismutase 1 G93A (SOD1-G93A) underlies one form of familial Amyotrophic Lateral Sclerosis (ALS). Exposures from viruses may also contribute to ALS, possibly by stimulating immune factors, such as IL-6, Interferon Stimulated Genes, and Nitric Oxide. Recently, chlorovirus ATCV-1, which encodes a SOD1, was shown to replicate in macrophages and induce inflammatory factors. Objective: This study aimed to determine if ATCV-1 influences development of motor degeneration in an ALS mouse model and to assess whether SOD1 of ATCV-1 influences production of inflammatory factors from macrophages. Methods: Sera from sporadic ALS patients were screened for antibody to ATCV-1. Active or inactivated ATCV-1, saline, or a viral mimetic, polyinosinic:polycytidylic acid (poly I:C) were injected intracranially into transgenic mice expressing human SOD1-G93A- or C57Bl/6 mice. RAW264.7 mouse macrophage cells were transfected with a plasmid vector expressing ATCV-1 SOD1 or an empty vector prior to stimulation with poly I:C with or without Interferon-gamma (IFN-γ). Results: Serum from sporadic ALS patients had significantly more IgG1 antibody directed against ATCV-1 than healthy controls. Infection of SOD1-G93A mice with active ATCV-1 significantly accelerated onset of motor loss, as measured by tail paralysis, hind limb tucking, righting reflex, and latency to fall in a hanging cage-lid test, but did not significantly affect mortality when compared to saline-treated transgenics. By contrast, poly I:C treatment significantly lengthened survival time but only minimally slowed onset of motor loss, while heat-inactivated ATCV-1 did not affect motor loss or survival. ATCV-1 SOD1 significantly increased expression of IL-6, IL-10, ISG promoter activity, and production of Nitric Oxide from RAW264.7 cells. Conclusion: ATCV-1 chlorovirus encoding an endogenous SOD1 accelerates pathogenesis but not mortality, while poly I:C that stimulates antiviral immune responses delays mortality in an ALS mouse model. ATCV-1 SOD1 enhances induction of inflammatory factors from macrophages.

11.
Nat Rev Microbiol ; 20(2): 83-94, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34522049

RESUMO

Understanding how phenotypes emerge from genotypes is a foundational goal in biology. As challenging as this task is when considering cellular life, it is further complicated in the case of viruses. During replication, a virus as a discrete entity (the virion) disappears and manifests itself as a metabolic amalgam between the virus and the host (the virocell). Identifying traits that unambiguously constitute a virus's phenotype is straightforward for the virion, less so for the virocell. Here, we present a framework for categorizing virus phenotypes that encompasses both virion and virocell stages and considers functional and performance traits of viruses in the context of fitness. Such an integrated view of virus phenotype is necessary for comprehensive interpretation of viral genome sequences and will advance our understanding of viral evolution and ecology.


Assuntos
Genoma Viral , Fenótipo , Vírus/classificação , Vírus/genética , Genótipo , Humanos , Vírion/genética , Replicação Viral/genética
12.
J Virol ; 96(2): e0136721, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34669449

RESUMO

Chloroviruses (family Phycodnaviridae) are large double-stranded DNA (dsDNA) viruses that infect unicellular green algae present in inland waters. These viruses have been isolated using three main chlorella-like green algal host cells, traditionally called NC64A, SAG, and Pbi, revealing extensive genetic diversity. In this study, we performed a functional genomic analysis on 36 chloroviruses that infected the three different hosts. Phylogenetic reconstruction based on the DNA polymerase B family gene clustered the chloroviruses into three distinct clades. The viral pan-genome consists of 1,345 clusters of orthologous groups of genes (COGs), with 126 COGs conserved in all viruses. Totals of 368, 268, and 265 COGs are found exclusively in viruses that infect NC64A, SAG, and Pbi algal hosts, respectively. Two-thirds of the COGs have no known function, constituting the "dark pan-genome" of chloroviruses, and further studies focusing on these genes may identify important novelties. The proportions of functionally characterized COGs composing the pan-genome and the core-genome are similar, but those related to transcription and RNA processing, protein metabolism, and virion morphogenesis are at least 4-fold more represented in the core genome. Bipartite network construction evidencing the COG sharing among host-specific viruses identified 270 COGs shared by at least one virus from each of the different host groups. Finally, our results reveal an open pan-genome for chloroviruses and a well-established core genome, indicating that the isolation of new chloroviruses can be a valuable source of genetic discovery. IMPORTANCE Chloroviruses are large dsDNA viruses that infect unicellular green algae distributed worldwide in freshwater environments. They comprise a genetically diverse group of viruses; however, a comprehensive investigation of the genomic evolution of these viruses is still missing. Here, we performed a functional pan-genome analysis comprising 36 chloroviruses associated with three different algal hosts in the family Chlorellaceae, referred to as zoochlorellae because of their endosymbiotic lifestyle. We identified a set of 126 highly conserved genes, most of which are related to essential functions in the viral replicative cycle. Several genes are unique to distinct isolates, resulting in an open pan-genome for chloroviruses. This profile is associated with generalist organisms, and new insights into the evolution and ecology of chloroviruses are presented. Ultimately, our results highlight the potential for genetic diversity in new isolates.


Assuntos
Genoma Viral , Phycodnaviridae/genética , Chlorella/classificação , Chlorella/virologia , DNA Viral/genética , Variação Genética , Genoma Viral/genética , Genômica , Especificidade de Hospedeiro , Phycodnaviridae/classificação , Phycodnaviridae/isolamento & purificação , Filogenia , Proteínas Virais/genética
13.
Glycobiology ; 32(3): 260-273, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34939095

RESUMO

Paramecium bursaria chlorella virus MA-1D is a chlorovirus that infects Chlorella variabilis strain NC64A, a symbiont of the protozoan Paramecium bursaria. MA-1D has a 339-kb genome encoding ca. 366 proteins and 11 tRNAs. Like other chloroviruses, its major capsid protein (MCP) is decorated with N-glycans, whose structures have been solved in this work by using nuclear magnetic spectroscopy and matrix-assisted laser desorption ionization-time of flight mass spectrometry along with MS/MS experiments. This analysis identified three N-linked oligosaccharides that differ in the nonstoichiometric presence of three monosaccharides, with the largest oligosaccharide composed of eight residues organized in a highly branched fashion. The N-glycans described here share several features with those of the other chloroviruses except that they lack a distal xylose unit that was believed to be part of a conserved core region for all the chloroviruses. Examination of the MA-1D genome detected a gene with strong homology to the putative xylosyltransferase in the reference chlorovirus PBCV-1 and in virus NY-2A, albeit mutated with a premature stop codon. This discovery means that we need to reconsider the essential features of the common core glycan region in the chloroviruses.


Assuntos
Chlorella , Paramecium , Chlorella/genética , Oligossacarídeos/química , Paramecium/genética , Polissacarídeos/química , Espectrometria de Massas em Tandem
14.
Microorganisms ; 9(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34683491

RESUMO

Chloroviruses are large viruses that replicate in chlorella-like green algae and normally exist as mutualistic endosymbionts (referred to as zoochlorellae) in protists such as Paramecium bursaria. Chlorovirus populations rise and fall in indigenous waters through time; however, the factors involved in these virus fluctuations are still under investigation. Chloroviruses attach to the surface of P. bursaria but cannot infect their zoochlorellae hosts because the viruses cannot reach the zoochlorellae as long as they are in the symbiotic phase. Predators of P. bursaria, such as copepods and didinia, can bring chloroviruses into contact with zoochlorellae by disrupting the paramecia, which results in an increase in virus titers in microcosm experiments. Here, we report that another predator of P. bursaria, Bursaria truncatella, can also increase chlorovirus titers. After two days of foraging on P. bursaria, B. truncatella increased infectious chlorovirus abundance about 20 times above the controls. Shorter term foraging (3 h) resulted in a small increase of chlorovirus titers over the controls and more foraging generated more chloroviruses. Considering that B. truncatella does not release viable zoochlorellae either during foraging or through fecal pellets, where zoochlorellae could be infected by chlorovirus, we suggest a third pathway of predator virus catalysis. By engulfing the entire protist and digesting it slowly, virus replication can occur within the predator and some of the virus is passed out through a waste vacuole. These results provide additional support for the hypothesis that predators of P. bursaria are important drivers of chlorovirus population sizes and dynamics.

15.
PLoS One ; 16(10): e0252696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34673785

RESUMO

Genetic and molecular modifications of the large dsDNA chloroviruses, with genomes of 290 to 370 kb, would expedite studies to elucidate the functions of both identified and unidentified virus-encoded proteins. These plaque-forming viruses replicate in certain unicellular, eukaryotic chlorella-like green algae. However, to date, only a few of these algal species and virtually none of their viruses have been genetically manipulated due to lack of practical methods for genetic transformation and genome editing. Attempts at using Agrobacterium-mediated transfection of chlorovirus host Chlorella variabilis NC64A with a specially-designed binary vector resulted in successful transgenic cell selection based on expression of a hygromycin-resistance gene, initial expression of a green fluorescence gene and demonstration of integration of Agrobacterium T-DNA. However, expression of the integrated genes was soon lost. To develop gene editing tools for modifying specific chlorovirus CA-4B genes using preassembled Cas9 protein-sgRNA ribonucleoproteins (RNPs), we tested multiple methods for delivery of Cas9/sgRNA RNP complexes into infected cells including cell wall-degrading enzymes, electroporation, silicon carbide (SiC) whiskers, and cell-penetrating peptides (CPPs). In one experiment two independent virus mutants were isolated from macerozyme-treated NC64A cells incubated with Cas9/sgRNA RNPs targeting virus CA-4B-encoded gene 034r, which encodes a glycosyltransferase. Analysis of DNA sequences from the two mutant viruses showed highly targeted nucleotide sequence modifications in the 034r gene of each virus that were fully consistent with Cas9/RNP-directed gene editing. However, in ten subsequent experiments, we were unable to duplicate these results and therefore unable to achieve a reliable system to genetically edit chloroviruses. Nonetheless, these observations provide strong initial suggestions that Cas9/RNPs may function to promote editing of the chlorovirus genome, and that further experimentation is warranted and worthwhile.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Phycodnaviridae/genética , Transformação Genética/genética , Agrobacterium/virologia , Chlorella/virologia , Vírus de DNA/genética , Eletroporação/métodos , Edição de Genes/métodos , Ribonucleoproteínas/genética , Proteínas Virais/genética
16.
Microbiome ; 9(1): 160, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34281625

RESUMO

BACKGROUND: Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. RESULTS: We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. CONCLUSIONS: Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally. Video Abstract.


Assuntos
Bacteriófagos , Microbiota , Bactérias/genética , Bacteriófagos/genética , Camada de Gelo , Metagenômica
17.
Cells ; 10(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066987

RESUMO

Due to the redundancy of the genetic code most amino acids are encoded by multiple synonymous codons. It has been proposed that a biased frequency of synonymous codons can affect the function of proteins by modulating distinct steps in transcription, translation and folding. Here, we use two similar prototype K+ channels as model systems to examine whether codon choice has an impact on protein sorting. By monitoring transient expression of GFP-tagged channels in mammalian cells, we find that one of the two channels is sorted in a codon and cell cycle-dependent manner either to mitochondria or the secretory pathway. The data establish that a gene with either rare or frequent codons serves, together with a cell-state-dependent decoding mechanism, as a secondary code for sorting intracellular membrane proteins.


Assuntos
Uso do Códon , Código Genético , Canais de Potássio/genética , Biossíntese de Proteínas , Humanos , Canais de Potássio/metabolismo , Transporte Proteico
18.
Viruses ; 13(5)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924931

RESUMO

Chloroviruses are unusual among viruses infecting eukaryotic organisms in that they must, like bacteriophages, penetrate a rigid cell wall to initiate infection. Chlorovirus PBCV-1 infects its host, Chlorella variabilis NC64A by specifically binding to and degrading the cell wall of the host at the point of contact by a virus-packaged enzyme(s). However, PBCV-1 does not use any of the five previously characterized virus-encoded polysaccharide degrading enzymes to digest the Chlorella host cell wall during virus entry because none of the enzymes are packaged in the virion. A search for another PBCV-1-encoded and virion-associated protein identified protein A561L. The fourth domain of A561L is a 242 amino acid C-terminal domain, named A561LD4, with cell wall degrading activity. An A561LD4 homolog was present in all 52 genomically sequenced chloroviruses, infecting four different algal hosts. A561LD4 degraded the cell walls of all four chlorovirus hosts, as well as several non-host Chlorella spp. Thus, A561LD4 was not cell-type specific. Finally, we discovered that exposure of highly purified PBCV-1 virions to A561LD4 increased the specific infectivity of PBCV-1 from about 25-30% of the particles forming plaques to almost 50%. We attribute this increase to removal of residual host receptor that attached to newly replicated viruses in the cell lysates.


Assuntos
Parede Celular/metabolismo , Chlorella/metabolismo , Chlorella/virologia , DNA Ligases/metabolismo , Interações Hospedeiro-Patógeno , Phycodnaviridae/fisiologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Clorofila/metabolismo , DNA Ligases/química , DNA Ligases/genética , Ativação Enzimática , Phycodnaviridae/classificação , Phycodnaviridae/genética , Phycodnaviridae/ultraestrutura , Filogenia , Especificidade da Espécie , Proteínas Virais/química , Proteínas Virais/genética , Vírion , Ligação Viral
19.
J Phycol ; 57(4): 1199-1211, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33713347

RESUMO

Animals and fungi produce cholesterol and ergosterol, respectively, while plants produce the phytosterols stigmasterol, campesterol, and ß-sitosterol in various combinations. The recent sequencing of many algal genomes allows the detailed reconstruction of the sterol metabolic pathways. Here, we characterized sterol synthesis in two sequenced Chlorella spp., the free-living C. sorokiniana, and symbiotic C. variabilis NC64A. Chlamydomonas reinhardtii was included as an internal control and Coccomyxa subellipsoidea as a plant-like outlier. We found that ergosterol was the major sterol produced by Chlorella spp. and C. reinhardtii, while C. subellipsoidea produced the three phytosterols found in plants. In silico analysis of the C. variabilis NC64A, C. sorokiniana, and C. subellipsoidea genomes identified 22 homologs of sterol biosynthetic genes from Arabidopsis thaliana, Saccharomyces cerevisiae, and C. reinhardtii. The presence of CAS1, CPI1, and HYD1 in the four algal genomes suggests the higher plant cycloartenol branch for sterol biosynthesis, confirming that algae and fungi use different pathways for ergosterol synthesis. Phylogenetic analysis for 40 oxidosqualene cyclases (OSCs) showed that the nine algal OSCs clustered with the cycloartenol cyclases, rather than the lanosterol cyclases, with the OSC for C. subellipsoidea positioned in between the higher plants and the eight other algae. With regard to why C. subellipsoidea produced phytosterols instead of ergosterol, we identified 22 differentially conserved positions where C. subellipsoidea CAS and A. thaliana CAS1 have one amino acid while the three ergosterol producing algae have another. Together, these results emphasize the position of the unicellular algae as an evolutionary transition point for sterols.


Assuntos
Chlorella , Fitosteróis , Animais , Biologia Computacional , Ergosterol , Filogenia , Esteróis
20.
J Gen Physiol ; 153(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439243

RESUMO

It has become increasingly apparent that the lipid composition of cell membranes affects the function of transmembrane proteins such as ion channels. Here, we leverage the structural and functional diversity of small viral K+ channels to systematically examine the impact of bilayer composition on the pore module of single K+ channels. In vitro-synthesized channels were reconstituted into phosphatidylcholine bilayers ± cholesterol or anionic phospholipids (aPLs). Single-channel recordings revealed that a saturating concentration of 30% cholesterol had only minor and protein-specific effects on unitary conductance and gating. This indicates that channels have effective strategies for avoiding structural impacts of hydrophobic mismatches between proteins and the surrounding bilayer. In all seven channels tested, aPLs augmented the unitary conductance, suggesting that this is a general effect of negatively charged phospholipids on channel function. For one channel, we determined an effective half-maximal concentration of 15% phosphatidylserine, a value within the physiological range of aPL concentrations. The different sensitivity of two channel proteins to aPLs could be explained by the presence/absence of cationic amino acids at the interface between the lipid headgroups and the transmembrane domains. aPLs also affected gating in some channels, indicating that conductance and gating are uncoupled phenomena and that the impact of aPLs on gating is protein specific. In two channels, the latter can be explained by the altered orientation of the pore-lining transmembrane helix that prevents flipping of a phenylalanine side chain into the ion permeation pathway for long channel closings. Experiments with asymmetrical bilayers showed that this effect is leaflet specific and most effective in the inner leaflet, in which aPLs are normally present in plasma membranes. The data underscore a general positive effect of aPLs on the conductance of K+ channels and a potential interaction of their negative headgroup with cationic amino acids in their vicinity.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Canais Iônicos , Fosfatidilserinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...