Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Lett ; 4(6): 479-490, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33312684

RESUMO

Genomic imprinting is the differential expression alleles in diploid individuals, with the expression being dependent on the sex of the parent from which it was inherited. Haig's kinship theory hypothesizes that genomic imprinting is due to an evolutionary conflict of interest between alleles from the mother and father. In social insects, it has been suggested that genomic imprinting should be widespread. One recent study identified parent-of-origin expression in honey bees and found evidence supporting the kinship theory. However, little is known about genomic imprinting in insects and multiple theoretical predictions must be tested to avoid single-study confirmation bias. We, therefore, tested for parent-of-origin expression in a primitively eusocial bee. We found equal numbers of maternally and paternally biased expressed genes. The most highly biased genes were maternally expressed, offering support for the kinship theory. We also found low conservation of potentially imprinted genes with the honey bee, suggesting rapid evolution of genomic imprinting in Hymenoptera.

2.
Proc Biol Sci ; 284(1848)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28148747

RESUMO

Several studies have suggested that covert stressors can contribute to bee colony declines. Here we provide a novel case study and show using radiofrequency identification tracking technology that covert deformed wing virus (DWV) infections in adult honeybee workers seriously impact long-term foraging and survival under natural foraging conditions. In particular, our experiments show that adult workers injected with low doses of DWV experienced increased mortality rates, that DWV caused workers to start foraging at a premature age, and that the virus reduced the workers' total activity span as foragers. Altogether, these results demonstrate that covert DWV infections have strongly deleterious effects on honeybee foraging and survival. These results are consistent with previous studies that suggested DWV to be an important contributor to the ongoing bee declines in Europe and the USA. Overall, our study underlines the strong impact that covert pathogen infections can have on individual and group-level performance in bees.


Assuntos
Comportamento Apetitivo , Abelhas/virologia , Vírus de Insetos/patogenicidade , Asas de Animais/virologia , Animais
3.
PLoS One ; 10(11): e0141510, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544036

RESUMO

Patterns of genetic variation in human populations across the African continent are still not well studied in comparison with Eurasia and America, despite the high genetic and cultural diversity among African populations. In population and forensic genetic studies a single sample is often used to represent a complete African region. In such a scenario, inappropriate sampling strategies and/or the use of local, isolated populations may bias interpretations and pose questions of representativeness at a macrogeographic-scale. The non-recombining region of the Y-chromosome (NRY) has great potential to reveal the regional representation of a sample due to its powerful phylogeographic information content. An area poorly characterized for Y-chromosomal data is the West-African region along the Bight of Benin, despite its important history in the trans-Atlantic slave trade and its large number of ethnic groups, languages and lifestyles. In this study, Y-chromosomal haplotypes from four Beninese populations were determined and a global meta-analysis with available Y-SNP and Y-STR data from populations along the Bight of Benin and surrounding areas was performed. A thorough methodology was developed allowing comparison of population samples using Y-chromosomal lineage data based on different Y-SNP panels and phylogenies. Geographic proximity turned out to be the best predictor of genetic affinity between populations along the Bight of Benin. Nevertheless, based on Y-chromosomal data from the literature two population samples differed strongly from others from the same or neighbouring areas and are not regionally representative within large-scale studies. Furthermore, the analysis of the HapMap sample YRI of a Yoruban population from South-western Nigeria based on Y-SNPs and Y-STR data showed for the first time its regional representativeness, a result which is important for standard population and forensic genetic applications using the YRI sample. Therefore, the uniquely and powerful geographical information carried by the Y-chromosome makes it an important locus to test the representativeness of a certain sample even in the genomic era, especially in poorly investigated areas like Africa.


Assuntos
Cromossomos Humanos Y/genética , Pai , Marcadores Genéticos/genética , Benin , Genômica , Técnicas de Genotipagem , Haplótipos , Humanos , Masculino , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único
4.
PLoS One ; 10(8): e0137223, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322892

RESUMO

BACKGROUND: The human Y chromosome is almost always excluded from genome-wide investigations of copy number variants (CNVs) due to its highly repetitive structure. This chromosome should not be forgotten, not only for its well-known relevance in male fertility, but also for its involvement in clinical phenotypes such as cancers, heart failure and sex specific effects on brain and behaviour. RESULTS: We analysed Y chromosome data from Affymetrix 6.0 SNP arrays and found that the signal intensities for most of 8179 SNP/CN probes in the male specific region (MSY) discriminated between a male, background signals in a female and an isodicentric male containing a large deletion of the q-arm and a duplication of the p-arm of the Y chromosome. Therefore, this SNP/CN platform is suitable for identification of gain and loss of Y chromosome sequences. In a set of 1718 males, we found 25 different CNV patterns, many of which are novel. We confirmed some of these variants by PCR or qPCR. The total frequency of individuals with CNVs was 14.7%, including 9.5% with duplications, 4.5% with deletions and 0.7% exhibiting both. Hence, a novel observation is that the frequency of duplications was more than twice the frequency of deletions. Another striking result was that 10 of the 25 detected variants were significantly overrepresented in one or more haplogroups, demonstrating the importance to control for haplogroups in genome-wide investigations to avoid stratification. NO-M214(xM175) individuals presented the highest percentage (95%) of CNVs. If they were not counted, 12.4% of the rest included CNVs, and the difference between duplications (8.9%) and deletions (2.8%) was even larger. CONCLUSIONS: Our results demonstrate that currently available genome-wide SNP platforms can be used to identify duplications and deletions in the human Y chromosome. Future association studies of the full spectrum of Y chromosome variants will demonstrate the potential involvement of gain or loss of Y chromosome sequence in different human phenotypes.


Assuntos
Cromossomos Humanos Y/genética , Variações do Número de Cópias de DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Análise em Microsséries/métodos , Fenótipo , Deleção de Sequência/genética
5.
Forensic Sci Int Genet ; 15: 39-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25488610

RESUMO

Currently, several different Y-chromosomal phylogenies and haplogroup nomenclatures are presented in scientific literature and at conferences demonstrating the present diversity in Y-chromosomal phylogenetic trees and Y-SNP sets used within forensic and anthropological research. This situation can be ascribed to the exponential growth of the number of Y-SNPs discovered due to mostly next-generation sequencing (NGS) studies. As Y-SNPs and their respective phylogenetic positions are important in forensics, such as for male lineage characterization and paternal bio-geographic ancestry inference, there is a need for forensic geneticists to know how to deal with these newly identified Y-SNPs and phylogenies, especially since these phylogenies are often created with other aims than to carry out forensic genetic research. Therefore, we give here an overview of four categories of currently used Y-chromosomal phylogenies and the associated Y-SNP sets in scientific research in the current NGS era. We compare these categories based on the construction method, their advantages and disadvantages, the disciplines wherein the phylogenetic tree can be used, and their specific relevance for forensic geneticists. Based on this overview, it is clear that an up-to-date reduced tree with a consensus Y-SNP set and a stable nomenclature will be the most appropriate reference resource for forensic research. Initiatives to reach such an international consensus are therefore highly recommended.


Assuntos
Cromossomos Humanos Y , Genética Forense , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência/métodos , Humanos
6.
Mol Biol Evol ; 32(3): 661-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25468874

RESUMO

Many studies of human populations have used the male-specific region of the Y chromosome (MSY) as a marker, but MSY sequence variants have traditionally been subject to ascertainment bias. Also, dating of haplogroups has relied on Y-specific short tandem repeats (STRs), involving problems of mutation rate choice, and possible long-term mutation saturation. Next-generation sequencing can ascertain single nucleotide polymorphisms (SNPs) in an unbiased way, leading to phylogenies in which branch-lengths are proportional to time, and allowing the times-to-most-recent-common-ancestor (TMRCAs) of nodes to be estimated directly. Here we describe the sequencing of 3.7 Mb of MSY in each of 448 human males at a mean coverage of 51×, yielding 13,261 high-confidence SNPs, 65.9% of which are previously unreported. The resulting phylogeny covers the majority of the known clades, provides date estimates of nodes, and constitutes a robust evolutionary framework for analyzing the history of other classes of mutation. Different clades within the tree show subtle but significant differences in branch lengths to the root. We also apply a set of 23 Y-STRs to the same samples, allowing SNP- and STR-based diversity and TMRCA estimates to be systematically compared. Ongoing purifying selection is suggested by our analysis of the phylogenetic distribution of nonsynonymous variants in 15 MSY single-copy genes.


Assuntos
Cromossomos Humanos Y/genética , Polimorfismo de Nucleotídeo Único/genética , Evolução Molecular , Projeto HapMap , Humanos , Masculino , Filogenia , Análise de Sequência de DNA
7.
Forensic Sci Int Genet ; 11: 214-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24815371

RESUMO

The analysis of human short tandem repeats of the Y-chromosome (Y-STRs) provides a powerful tool in forensic cases for male sex identification, male lineage identification and identification of the geographical origin of male lineages. As the commonly used 12 and 17 Y-STR multiplexes do not discriminate between some unrelated males, additional Y-STRs were implemented in the PowerPlex(®) Y23 System to supplement the existing commercial Y-STR kits. Until today, the forensic value of a (near) 23 versus 17 Y-STR haplotype match between an unknown DNA donor and a certain biological sample in a database is not yet well studied. This will be of huge interest for cases where an autosomal DNA profile yields no match to a DNA database and the database is used for familial searching (male relative(s) of the offender) or for the estimation of the geographical origin of the offender. In order to value (near) 23 Y-STR haplotype matches in a local sample from Western Europe, we selected the region of Flanders (Belgium) due to the already present knowledge on its Y-chromosomal variants. Many Y-chromosomes of this region were previously genotyped with Y-SNPs at a high resolution of the most recently updated Y-chromosomal tree and the deep-rooted genealogy of each DNA donor was already established. By comparing (near) matches of 23 versus 17 Y-STR haplotypes between patrilineal-unrelated males, a substantial lower number of uninformative (near) 23 Y-STR haplotype matches has been observed compared to 17 Y-STR haplotypes. Furthermore, the use of SNP data was informative to discriminate >60% of unrelated males with an (near) identical 17 Y-STR match while SNP data was only necessary to discriminate about 10% of unrelated males with a 23 Y-STR haplotype that differed at only two Y-STRs. This shows the higher value of the Y23 haplotype within familial DNA searching and the estimation of the geographical origin of a DNA donor. Therefore, the use of the PowerPlex(®) Y23 System instead of the commonly used 12 and 17 Y-STRs by the forensic community is recommended as it will increase the efficiency of Y-STRs in forensic casework.


Assuntos
Cromossomos Humanos Y , Haplótipos , Repetições de Microssatélites/genética , Europa (Continente) , Humanos
8.
Electrophoresis ; 35(21-22): 3102-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24615884

RESUMO

A state-of-the-art phylogeny of the human Y-chromosome is an essential tool for forensic genetics. The explosion of whole genome sequencing (WGS) data due to the rapid progress of next-generation sequencing facilities is useful to optimize and to increase the resolution of the phylogenetic Y-chromosomal tree. The most interesting Y-chromosomal variants to increase the phylogeny are SNPs (Y-SNPs) especially since the software to call them in WGS data and to genotype them in forensic assays has been optimized over the past years. The PENNY software presented here detects potentially phylogenetic interesting Y-SNPs in silico based on SNP calling data files and classifies them into different types according to their position in the currently used Y-chromosomal tree. The software utilized 790 available male WGS samples of which 172 had a high SNP calling quality. In total, 1269 Y-SNPs potentially capable of increasing the resolution of the Y-chromosomal phylogenetic tree were detected based on a first run with PENNY. Based on a test panel of 57 high-quality and 618 low-quality WGS samples, we could prove that these newly added Y-SNPs indeed increased the resolution of the phylogenetic Y-chromosomal analysis substantially. Finally, we performed a second run with PENNY whereby all samples including those of the test panel are used and this resulted in 509 additional phylogenetic promising Y-SNPs. By including these additional Y-SNPs, a final update of the present phylogenetic Y-chromosomal tree which is useful for forensic applications was generated. In order to find more convincing forensic interesting Y-SNPs with this PENNY software, the number of samples and variety of the haplogroups to which these samples belong needs to increase. The PENNY software (inclusive the user manual) is freely available on the website http://bio.kuleuven.be/eeb/lbeg/software.


Assuntos
Cromossomos Humanos Y/genética , Simulação por Computador , Genética Forense/métodos , Genômica/métodos , Polimorfismo de Nucleotídeo Único/genética , Humanos , Masculino , Mutação
9.
Ann Hum Genet ; 78(2): 92-103, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24571229

RESUMO

Y-chromosomal short tandem repeats (Y-STRs) are often used in addition to Y-chromosomal single-nucleotide polymorphisms (Y-SNP) to detect subtle patterns in a population genetic structure. There are, however, indications for Y-STR haplotype resemblance across different subhaplogroups within haplogroup R1b1b2 (R-M269) which may lead to erosion in the observation of the population genetic pattern. Hence the question arises whether Y-STR haplotypes are still informative beyond high-resolution Y-SNP genotyping for population genetic studies. To address this question, we genotyped the Y chromosomes of more than 1000 males originating from the West-European regions of Flanders (Belgium), North-Brabant and Limburg (the Netherlands) at the highest resolution of the current Y-SNP tree together with 38 commonly used Y-STRs. We observed high resemblance of Y-STR haplotypes between males belonging to different subhaplogroups of haplogroup R-M269. Several subhaplogroups within R-M269 could not be distinguished from each other based on differences in Y-STR haplotype variation. The most likely hypothesis to explain this similarity of Y-STR haplotypes within the population of R-M269 members is a recent radiation where various subhaplogroups originated within a relatively short time period. We conclude that high-resolution Y-SNP typing rather than Y-STR typing might be more useful to study population genetic patterns in (Western) Europe.


Assuntos
Cromossomos Humanos Y/genética , Repetições de Microssatélites , População Branca/genética , Bélgica , Variação Genética , Genética Populacional , Haplótipos , Humanos , Masculino , Países Baixos , Filogenia , Polimorfismo de Nucleotídeo Único , População Branca/classificação
10.
Eur J Hum Genet ; 22(5): 681-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24105374

RESUMO

Genetic analysis strongly increases the opportunity to identify skeletal remains or other biological samples from historical figures. However, validation of this identification is essential and should be done by DNA typing of living relatives. Based on the similarity of a limited set of Y-STRs, a blood sample and a head were recently identified as those belonging respectively to King Louis XVI and his paternal ancestor King Henry IV. Here, we collected DNA samples from three living males of the House of Bourbon to validate the since then controversial identification of these remains. The three living relatives revealed the Bourbon's Y-chromosomal variant on a high phylogenetic resolution for several members of the lineage between Henry IV and Louis XVI. This 'true' Bourbon's variant is different from the published Y-STR profiles of the blood as well as of the head. The earlier identifications of these samples can therefore not be validated. Moreover, matrilineal genealogical data revealed that the published mtDNA sequence of the head was also different from the one of a series of relatives. This therefore leads to the conclusion that the analyzed samples were not from the French kings. Our study once again demonstrated that in order to realize an accurate genetic identification of historical remains DNA typing of living persons, who are paternally or maternally related with the presumed donor of the samples, is required.


Assuntos
Cromossomos Humanos Y , Impressões Digitais de DNA , Antropologia Forense , Haplótipos , DNA Mitocondrial , Genealogia e Heráldica , Humanos , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único
11.
Hum Mutat ; 35(2): 187-91, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24166809

RESUMO

During the last few decades, a wealth of studies dedicated to the human Y chromosome and its DNA variation, in particular Y-chromosome single-nucleotide polymorphisms (Y-SNPs), has led to the construction of a well-established Y-chromosome phylogeny. Since the recent advent of new sequencing technologies, the discovery of additional Y-SNPs is exploding and their continuous incorporation in the phylogenetic tree is leading to an ever higher resolution. However, the large and increasing amount of information included in the "complete" Y-chromosome phylogeny, which now already includes many thousands of identified Y-SNPs, can be overwhelming and complicates its understanding as well as the task of selecting suitable markers for genotyping purposes in evolutionary, demographic, anthropological, genealogical, medical, and forensic studies. As a solution, we introduce a concise reference phylogeny whereby we do not aim to provide an exhaustive tree that includes all known Y-SNPs but, rather, a quite stable reference tree aiming for optimal global discrimination capacity based on a strongly reduced set that includes only the most resolving Y-SNPs. Furthermore, with this reference tree, we wish to propose a common standard for Y-marker as well as Y-haplogroup nomenclature. The current version of our tree is based on a core set of 417 branch-defining Y-SNPs and is available online at http://www.phylotree.org/Y.


Assuntos
Cromossomos Humanos Y/genética , Bases de Dados Genéticas , Polimorfismo de Nucleotídeo Único , Evolução Molecular , Variação Genética , Genótipo , Humanos , Modelos Moleculares , Filogenia
12.
BMC Genomics ; 14: 101, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23405914

RESUMO

BACKGROUND: Due to the rapid progress of next-generation sequencing (NGS) facilities, an explosion of human whole genome data will become available in the coming years. These data can be used to optimize and to increase the resolution of the phylogenetic Y chromosomal tree. Moreover, the exponential growth of known Y chromosomal lineages will require an automatic determination of the phylogenetic position of an individual based on whole genome SNP calling data and an up to date Y chromosomal tree. RESULTS: We present an automated approach, 'AMY-tree', which is able to determine the phylogenetic position of a Y chromosome using a whole genome SNP profile, independently from the NGS platform and SNP calling program, whereby mistakes in the SNP calling or phylogenetic Y chromosomal tree are taken into account. Moreover, AMY-tree indicates ambiguities within the present phylogenetic tree and points out new Y-SNPs which may be phylogenetically relevant. The AMY-tree software package was validated successfully on 118 whole genome SNP profiles of 109 males with different origins. Moreover, support was found for an unknown recurrent mutation, wrong reported mutation conversions and a large amount of new interesting Y-SNPs. CONCLUSIONS: Therefore, AMY-tree is a useful tool to determine the Y lineage of a sample based on SNP calling, to identify Y-SNPs with yet unknown phylogenetic position and to optimize the Y chromosomal phylogenetic tree in the future. AMY-tree will not add lineages to the existing phylogenetic tree of the Y-chromosome but it is the first step to analyse whole genome SNP profiles in a phylogenetic framework.


Assuntos
Algoritmos , Cromossomos Humanos Y/genética , Genômica/métodos , Filogenia , Polimorfismo de Nucleotídeo Único , Software , Alelos , Haplótipos/genética , Humanos , Masculino
13.
Forensic Sci Int Genet ; 6(5): 588-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22390852

RESUMO

We present an automated method to generate DNA profiles from replicate PCRs by combining advantages of the composite and consensus method by a system of brackets in which an allelic balance threshold is used as a variable to separate DNA-profiles of major from minor donors. Through the analysis of artificial low (125 pg) and high (250 pg) template three-person mixtures with low (1:1.5:3) and high (1:5:10) donor ratios we demonstrate the usefulness of a tool to determine the optimal allelic balance threshold within a locus. The automated extraction of dominant profiles saves considerable amounts of time when producing composite-consensus profiles. Drop-in/drop-out rates are produced and a comparison is made with an alternative open source script to evaluate the dominant profiles generated. By introducing this script into the forensic community we hope to increase awareness of much needed collaborative efforts with bioinformaticians and statisticians to develop forensic open source software scripts.


Assuntos
Automação , DNA/genética , Alelos , Humanos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...