Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(16): eadk9522, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630818

RESUMO

A change of orbital state alters the coupling between ions and their surroundings drastically. Orbital excitations are hence key to understand and control interaction of ions. Rare-earth elements with strong magneto-crystalline anisotropy (MCA) are important ingredients for magnetic devices. Thus, control of their localized 4f magnetic moments and anisotropy is one major challenge in ultrafast spin physics. With time-resolved x-ray absorption and resonant inelastic scattering experiments, we show for Tb metal that 4f-electronic excitations out of the ground-state multiplet occur after optical pumping. These excitations are driven by inelastic 5d-4f-electron scattering, altering the 4f-orbital state and consequently the MCA with important implications for magnetization dynamics in 4f-metals and more general for the excitation of localized electronic states in correlated materials.

2.
Inorg Chem ; 63(16): 7386-7400, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587408

RESUMO

The molecular spin-crossover phenomenon between high-spin (HS) and low-spin (LS) states is a promising route to next-generation information storage, sensing applications, and molecular spintronics. Spin-crossover complexes also provide a unique opportunity to study the ligand field (LF) properties of a system in both HS and LS states while maintaining the same ligand environment. Presently, we employ complementing valence and core-level spectroscopic methods to probe the electronic excited-state manifolds of the spin-crossover complex [FeII(H2B(pz)2)2phen]0. Light-induced excited spin-state trapping (LIESST) at liquid He temperatures is exploited to characterize magnetic and spectroscopic properties of the photoinduced HS state using SQUID magnetometry and magnetic circular dichroism spectroscopy. In parallel, Fe 2p3d RIXS spectroscopy is employed to examine the ΔS = 0, 1 excited LF states. These experimental studies are combined with state-of-the-art CASSCF/NEVPT2 and CASCI/NEVPT2 calculations characterizing the ground and LF excited states. Analysis of the acquired LF information further supports the notion that the spin-crossover of [FeII(H2B(pz)2)2phen]0 is asymmetric, evidenced by a decrease in eπ in the LS state. The results demonstrate the power of cross-correlating spectroscopic techniques with high and low LF information content to make accurate excited-state assignments, as well as the current capabilities of ab initio theory in interpreting these electronic properties.

3.
J Synchrotron Radiat ; 29(Pt 6): 1454-1464, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36345754

RESUMO

The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range.


Assuntos
Holografia , Lasers , Raios X , Radiografia
4.
Struct Dyn ; 8(4): 044305, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34476285

RESUMO

Second-order intensity interferometry was employed to study the spatial and temporal properties of the European X-ray Free-Electron Laser (EuXFEL). Measurements were performed at the soft x-ray Self-Amplified Spontaneous Emission (SASE3) undulator beamline at a photon energy of 1.2 keV in the Self-Amplified Spontaneous Emission (SASE) mode. Two high-power regimes of the SASE3 undulator settings, i.e., linear and quadratic undulator tapering at saturation, were studied in detail and compared with the linear gain regime. The statistical analysis showed an exceptionally high degree of spatial coherence up to 90% for the linear undulator tapering. Analysis of the measured data in spectral and spatial domains provided an average pulse duration of about 10 fs in our measurements. The obtained results will be valuable for the experiments requiring and exploiting short pulse duration and utilizing high coherence properties of the EuXFEL.

5.
J Phys Chem Lett ; 12(28): 6676-6683, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34260255

RESUMO

We demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)3]2+ how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation. The spin of the localized electron is deduced from the selection rules of the RIXS process establishing new experimental capabilities for probing transient charge and spin densities.

6.
Angew Chem Int Ed Engl ; 60(18): 10112-10121, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33497500

RESUMO

The ability of resonant X-ray emission spectroscopy (XES) to recover physical oxidation state information, which may often be ambiguous in conventional X-ray spectroscopy, is demonstrated. By combining Kß XES with resonant excitation in the XAS pre-edge region, resonant Kß XES (or 1s3p RXES) data are obtained, which probe the 3dn+1 final-state configuration. Comparison of the non-resonant and resonant XES for a series of high-spin ferrous and ferric complexes shows that oxidation state assignments that were previously unclear are now easily made. The present study spans iron tetrachlorides, iron sulfur clusters, and the MoFe protein of nitrogenase. While 1s3p RXES studies have previously been reported, to our knowledge, 1s3p RXES has not been previously utilized to resolve questions of metal valency in highly covalent systems. As such, the approach presented herein provides chemists with means to more rigorously and quantitatively address challenging electronic-structure questions.


Assuntos
Compostos de Ferro/química , Nitrogenase/química , Compostos de Ferro/metabolismo , Conformação Molecular , Nitrogenase/metabolismo , Oxirredução , Espectrometria por Raios X
7.
Angew Chem Int Ed Engl ; 60(4): 1891-1896, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33026170

RESUMO

The dinickel(II) dihydride complex (1K ) of a pyrazolate-based compartmental ligand with ß-diketiminato (nacnac) chelate arms (L- ), providing two pincer-type {N3 } binding pockets, has been reported to readily eliminate H2 and to serve as a masked dinickel(I) species. Discrete dinickel(I) complexes (2Na , 2K ) of L- are now synthesized via a direct reduction route. They feature two adjacent T-shaped metalloradicals that are antiferromagnetically coupled, giving an S=0 ground state. The two singly occupied local d x 2 - y 2 type magnetic orbitals are oriented into the bimetallic cleft, enabling metal-metal cooperative 2 e- substrate reductions as shown by the rapid reaction with H2 or O2 . X-ray crystallography reveals distinctly different positions of the K+ in 1K and 2K , suggesting a stabilizing interaction of K+ with the dihydride unit in 1K . H2 release from 1K is triggered by peripheral γ-C protonation at the nacnac subunits, which DFT calculations show lowers the barrier for reductive H2 elimination from the bimetallic cleft.

8.
Inorg Chem ; 58(23): 16292-16301, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31743026

RESUMO

Calcium is an abundant, nontoxic metal that finds many roles in synthetic and biological systems including the oxygen-evolving complex (OEC) of photosystem II. Characterization methods for calcium centers, however, are underdeveloped compared to those available for transition metals. Valence-to-core X-ray emission spectroscopy (VtC XES) selectively probes the electronic structure of an element's chemical environment, providing insight that complements the geometric information available from other techniques. Here, the utility of calcium VtC XES is established using an in-house dispersive spectrometer in combination with density functional theory. Spectral trends are rationalized within a molecular orbital framework, and Kß2,5 transitions, derived from molecular orbitals with primarily ligand p character, are found to be a promising probe of the calcium coordination environment. In particular, it is shown that calcium VtC XES is sensitive to the electronic structure changes that accompany oxo protonation in Mn3CaO4-based molecular mimics of the OEC. Through correlation to calculations, the potential of calcium VtC XES to address unresolved questions regarding the mechanism of biological water oxidation is highlighted.

9.
Inorg Chem ; 57(15): 9515-9530, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30044087

RESUMO

Understanding the detailed electronic structure of transition metal ions is essential in numerous areas of inorganic chemistry. In particular, the ability to map out the many particle d-d spectrum of a transition metal catalyst is key to understanding and predicting reactivity. However, from a practical perspective, there are often experimental limitations on the ability to determine the energetic ordering, and multiplicity of all the excited states. These limitations derive in part from parity and spin-selection rules, as well as from the limited energy range of many standard laboratory instruments. Herein, we demonstrate the ability of 2p3d resonant inelastic X-ray scattering (RIXS) to obtain detailed insights into the many particle spectrum of simple inorganic molecular iron complexes. The present study focuses on low-spin ferrous and ferric iron complexes, including [FeIII/II(tacn)2]3+/2+ and [FeIII/II(CN)6]3-/4-. This series thus allows us to assess the contribution of d-count and ligand donor type, by comparing the purely σ-donating tacn ligand to the π-accepting cyanide. In order to highlight the conceptual difference between RIXS and traditional optical spectroscopy, we compare first RIXS results with UV-vis and magnetic circular dichroism spectroscopy. We then highlight the ability of 2p3d RIXS to (1) separate d-d transitions from charge transfer transitions and (2) to determine the many particle d-d spectrum over a much wider energy range than is possible by optical spectroscopy. Our experimental results are correlated with semiempirical multiplet simulations and ab initio complete active space self-consistent field calculations in order to obtain detailed assignments of the excited states. These results show that Δ S = 1, and possibly Δ S = 2, transitions may be observed in 2p3d RIXS spectra. Hence, this methodology has great promise for future applications in all areas of transition metal inorganic chemistry.

10.
Inorg Chem ; 57(12): 7355-7361, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29847108

RESUMO

Iron sulfur (FeS) proteins perform a wide range of biological functions including electron transfer and catalysis. Understanding the complex reactivity of these systems requires a detailed understanding of their electronic properties, which are encoded in the low-energy d-d excited states. Here we demonstrate that iron L-edge 2p3d resonant inelastic X-ray scattering (RIXS) can measure d-d excitation spectra in a series of monomeric, dimeric, and tetrameric FeS model complexes. RIXS provides advantages over traditional optical spectroscopies, because it is capable of measuring low-energy electronic excitations (0-10 000 cm-1) and spin-flip transitions. RIXS reveals the dense manifold of d-d excited states in dimeric [2Fe-2S] and tetrameric [MFe3S4]2+ (M = V or Mo) complexes resulting from covalency and exchange coupling. These results support recent ab initio theoretical predictions that FeS clusters possess a much greater number of low-lying excited states than predicted by model Hamiltonians.

11.
Inorg Chem ; 56(14): 8203-8211, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28653856

RESUMO

Ligand field spectra provide direct information about the electronic structure of transition metal complexes. However, these spectra are difficult to measure by conventional optical techniques due to small cross sections for d-to-d transitions and instrumental limitations below 4000 cm-1. 2p3d resonant inelastic X-ray scattering (RIXS) is a second order process that utilizes dipole allowed 2p to 3d transitions to access d-d excited states. The measurement of ligand field excitation spectra by RIXS is demonstrated for a series of tetrahedral and octahedral Fe(II) and Fe(III) chlorides, which are denoted Fe(III)-Td, Fe(II)-Td, Fe(III)-Oh, and Fe(II)-Oh. The strong 2p spin-orbit coupling allows the measurement of spin forbidden transitions in RIXS spectroscopy. The Fe(III) spectra are dominated by transitions from the sextet ground state to quartet excited states, and the Fe(II) spectra contain transitions to triplet states in addition to the spin allowed 5Γ â†’ 5Γ transition. Each experimental spectrum is simulated using a ligand field multiplet model to extract the ligand field splitting parameter 10Dq and the Racah parameters B and C. The 10Dq values for Fe(III)-Td, Fe(II)-Td, and Fe(III)-Oh are found to be -0.7, -0.32, and 1.47 eV, respectively. In the case of Fe(II)-Oh, a single 10Dq parameter cannot be assigned because Fe(II)-Oh is a coordination polymer exhibiting axially compressed Fe(II)Cl 6 units. The 5T → 5E transition is split by the axial compression resulting in features at 0.51 and 0.88 eV. The present study forms the foundation for future applications of 2p3d RIXS to molecular iron sites in more complex systems, including iron-based catalysts and enzymes.

12.
Struct Dyn ; 4(4): 044021, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28529962

RESUMO

Picosecond X-ray absorption (XA) spectroscopy at the S K-edge (∼2.4 keV) is demonstrated and used to monitor excited state dynamics in a small organosulfur molecule (2-Thiopyridone, 2TP) following optical excitation. Multiple studies have reported that the thione (2TP) is converted into the thiol (2-Mercaptopyridine, 2MP) following photoexcitation. However, the timescale and photochemical pathway of this reaction remain uncertain. In this work, time-resolved XA spectroscopy at the S K-edge is used to monitor the formation and decay of two transient species following 400 nm excitation of 2TP dissolved in acetonitrile. The first transient species forms within the instrument response time (70 ps) and decays within 6 ns. The second transient species forms on a timescale of ∼400 ps and decays on a 15 ns timescale. Time-dependent density functional theory is used to identify the first and second transient species as the lowest-lying triplet states of 2TP and 2MP, respectively. This study demonstrates transient S K-edge XA spectroscopy as a sensitive and viable probe of time-evolving charge dynamics near sulfur sites in small molecules with future applications towards studying complex biological and material systems.

13.
Angew Chem Int Ed Engl ; 56(22): 6088-6092, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28374523

RESUMO

The femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort timescale.

14.
Inorg Chem ; 55(21): 11497-11501, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27731986

RESUMO

Spectroscopic probes of the electronic structure of transition metal-containing materials are invaluable to the design of new molecular catalysts and magnetic systems. Herein, we show that 2p3d resonant inelastic X-ray scattering (RIXS) can be used to observe both spin-allowed and (in the VIII case) spin-forbidden d-d excitation energies in molecular vanadium complexes. The spin-allowed d-d excitation energies determined by 2p3d RIXS are in good agreement with available optical data. In V(acac)3, a previously undetected spin-forbidden singlet state has been observed. The presence of this feature provides a ligand-field independent signature of VIII. It is also shown that d-d excitations may be obtained for porphyrin complexes. This is generally prohibitive using optical approaches due to intense porphyrin π-to-π* transitions. In addition, the intensities of charge-transfer features in 2p3d RIXS spectroscopy are shown to be a clear indication of metal-ligand covalency. The utility of 2p3d RIXS for future studies of complex inorganic systems is highlighted.

15.
J Phys Chem Lett ; 7(3): 465-70, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26727390

RESUMO

Time-resolved nitrogen-1s spectroscopy in the X-ray water window is presented as a novel probe of metal-ligand interactions and transient states in nitrogen-containing organic compounds. New information on iron(II) polypyridyl complexes via nitrogen core-level transitions yields insight into the charge density of the photoinduced high-spin state by comparing experimental results with time-dependent density functional theory. In the transient high-spin state, the 3d electrons of the metal center are more delocalized over the nearest-neighbor nitrogen atoms despite increased bond lengths. Our findings point to a strong coupling of electronic states with charge-transfer character, facilitating the ultrafast intersystem crossing cascade in these systems. The study also highlights the importance of local charge density measures to complement chemical interaction concepts of charge donation and back-bonding with molecular orbital descriptions of states.

16.
J Chem Phys ; 140(8): 084505, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24588183

RESUMO

Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5Ru(III)NCFe(II)(CN)5](-) (FeRu) dissolved in D2O and formamide and [(NC)5Fe(II)CNPt(IV)(NH3)4NCFe(II)(CN)5](4-) (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state. The FTIR spectra of the νCN modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic νCN modes. The vibrational mode anharmonicities of the individual νCN modes range from 14 to 28 cm(-1). The mixed-mode anharmonicities range from 2 to 14 cm(-1). In general, the bridging νCN mode is most weakly coupled to the radial νCN mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four νCN modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D2O. The νCN modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm(-1). This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the νCN modes in cyanide-bridged transition metal mixed valence complexes.

17.
J Phys Chem A ; 117(21): 4444-54, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23635307

RESUMO

Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of Ru(II) and Ru(III) complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6](4-) and Ru(II) polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5M(II)-CN-Ru(III)(NH3)5](-) (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

18.
J Chem Phys ; 138(6): 064104, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23425458

RESUMO

In this paper we present a time-domain time-dependent density functional theory (TDDFT) approach to calculate frequency-dependent polarizability and hyperpolarizabilities. In this approach, the electronic degrees of freedom are propagated within the density matrix based TDDFT framework using the efficient modified midpoint and unitary transformation algorithm. We use monochromatic waves as external perturbations and apply the finite field method to extract various orders of the time-dependent dipole moment. By fitting each order of time-dependent dipole to sinusoidal waves with harmonic frequencies, one can obtain the corresponding (hyper)polarizability tensors. This approach avoids explicit Fourier transform and therefore does not require long simulation time. The method is illustrated with application to the optically active organic molecule para-nitroaniline, of which the frequency-dependent polarizability α(-ω; ω), second-harmonic generation ß(-2ω; ω, ω), optical rectification ß(0; -ω, ω), third-harmonic generation γ(-3ω; ω, ω, ω), and degenerate four-wave mixing γ(-ω; ω, ω, -ω) are calculated.

19.
J Chem Theory Comput ; 9(9): 3933-8, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26592388

RESUMO

A guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for optimizing wave functions that are higher-energy solutions to the Roothaan-Hall equation. In this method, the eigenvectors of the previous SCF step are used to prediagonalize the current Fock/Kohn-Sham matrix, preserving the ordering of orbital occupations. When the subject of interest is an excited state of the same spin symmetry as the ground state, the initial guess of excited wave function is improved with a preconditioning step. The preconditioning step is an SCF iteration applied to the ß spin manifold if the initial guess is generated by orbital permutation in the α spin manifold. This simple preconditioning step gives rise to more-stable SCF convergence using the algorithm presented herein. The guided SCF method is used to optimize ligand-field excited states in tetrahedral transition-metal complexes, and calculate ΔSCF excitation energies. The calculated ligand-field transition energies are compared with those obtained from orbital energy differences, linear response time-dependent density functional theory, and experiments. The excitation energies obtained using the method presented in this work show a significant improvement over orbital energy differences and linear response method.

20.
J Phys Chem Lett ; 3(12): 1695-700, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26285730

RESUMO

This study uses transient X-ray absorption (XA) spectroscopy and time-dependent density functional theory (TD-DFT) to directly visualize the charge density around the metal atom and the surrounding ligands following an ultrafast metal-to-ligand charge-transfer (MLCT) process in the widely used Ru(II) solar cell dye, Ru(dcbpy)2(NCS)2 (termed N3). We measure the Ru L-edge XA spectra of the singlet ground ((1)A1) and the transient triplet ((3)MLCT) excited state of N3(4-) and perform TD-DFT calculations of 2p core-level excitations, which identify a unique spectral signature of the electron density on the NCS ligands. We find that the Ru 2p, Ru eg, and NCS π* orbitals are stabilized by 2.0, 1.0, and 0.6 eV, respectively, in the transient (3)MLCT state of the dye. These results highlight the role of the NCS ligands in governing the oxidation state of the Ru center.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...