Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 2(7): 100255, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35880023

RESUMO

Neuronal cultures provide a basis for reductionist insights that rely on molecular and pharmacological manipulation. However, the inability to culture mature adult CNS neurons limits our understanding of adult neuronal physiology. Here, we report methods for culturing adult central nervous system neurons in large numbers and across multiple brain regions for extended time periods. Primary adult neuronal cultures develop polarity; they establish segregated dendritic and axonal compartments, maintain resting membrane potentials, exhibit spontaneous and evoked electrical activity, and form neural networks. Cultured adult neurons isolated from different brain regions such as the hippocampus, cortex, brainstem, and cerebellum exhibit distinct cell morphologies, growth patterns, and spontaneous firing characteristics reflective of their regions of origin. Using adult motor cortex cultures, we identify a CNS "conditioning" effect after spinal cord injury. The ability to culture adult neurons offers a valuable tool for studying basic and therapeutic science of the brain.


Assuntos
Doenças do Sistema Nervoso Central , Neurônios , Humanos , Sistema Nervoso Central , Axônios/fisiologia , Encéfalo
2.
Cells ; 10(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34943804

RESUMO

Spinal cord injury (SCI) leads to irreversible functional impairment caused by neuronal loss and the disruption of neuronal connections across the injury site. While several experimental strategies have been used to minimize tissue damage and to enhance axonal growth and regeneration, the corticospinal projection, which is the most important voluntary motor system in humans, remains largely refractory to regenerative therapeutic interventions. To date, one of the most promising pre-clinical therapeutic strategies has been neural stem cell (NSC) therapy for SCI. Over the last decade we have found that host axons regenerate into spinal NSC grafts placed into sites of SCI. These regenerating axons form synapses with the graft, and the graft in turn extends very large numbers of new axons from the injury site over long distances into the distal spinal cord. Here we discuss the pathophysiology of SCI that makes the spinal cord refractory to spontaneous regeneration, the most recent findings of neural stem cell therapy for SCI, how it has impacted motor systems including the corticospinal tract and the implications for sensory feedback.


Assuntos
Axônios/fisiologia , Rede Nervosa/fisiologia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/fisiologia , Medula Espinal/fisiologia , Humanos , Células-Tronco Neurais/transplante , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia
3.
Nature ; 581(7806): 77-82, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32376949

RESUMO

Grafts of spinal-cord-derived neural progenitor cells (NPCs) enable the robust regeneration of corticospinal axons and restore forelimb function after spinal cord injury1; however, the molecular mechanisms that underlie this regeneration are unknown. Here we perform translational profiling specifically of corticospinal tract (CST) motor neurons in mice, to identify their 'regenerative transcriptome' after spinal cord injury and NPC grafting. Notably, both injury alone and injury combined with NPC grafts elicit virtually identical early transcriptomic responses in host CST neurons. However, in mice with injury alone this regenerative transcriptome is downregulated after two weeks, whereas in NPC-grafted mice this transcriptome is sustained. The regenerative transcriptome represents a reversion to an embryonic transcriptional state of the CST neuron. The huntingtin gene (Htt) is a central hub in the regeneration transcriptome; deletion of Htt significantly attenuates regeneration, which shows that Htt has a key role in neural plasticity after injury.


Assuntos
Proliferação de Células/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regeneração Nervosa/genética , Células-Tronco Neurais/citologia , Neurônios/metabolismo , Neurônios/patologia , Transcrição Gênica , Animais , Axônios/patologia , Axônios/fisiologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Proteína Huntingtina/genética , Camundongos , Células-Tronco Neurais/transplante , Plasticidade Neuronal , Neurônios/citologia , Neurônios/transplante , Biossíntese de Proteínas , Tratos Piramidais/citologia , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia , RNA-Seq , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Transcriptoma
4.
Bioconjug Chem ; 31(5): 1497-1509, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32337973

RESUMO

We detail the preparation of highly fluorescent quantum dots (QDs), surface-engineered with multifunctional polymer ligands that are compact and readily compatible with strain-promoted click conjugation, and the use of these nanocrystals in immunofluorescence and in vivo imaging. The ligand design combines the benefits of mixed coordination (i.e., thiol and imidazole) with zwitterion motifs, yielding sterically-stabilized QDs that present a controllable number of azide groups, for easy conjugation to biomolecules via the selective click chemistry. The polymer coating was characterized using NMR spectroscopy to extract estimates of the diffusion coefficient, hydrodynamic size, and ligand density. The azide-functionalized QDs were conjugated to anti-tropomyosin receptor kinase B antibody (α-TrkB) or to the brain-derived neurotrophic factor (BDNF). These conjugates were highly effective for labeling the tropomyosin receptor kinase B (TrkB) in pyramidal neurons within cortical tissue and for monitoring the BDNF induced activation of TrkB signaling in live neuronal cells. Finally, the polymer-coated QDs were applied for in vivo imaging of Drosophila melanogaster embryos, where the QDs remained highly fluorescent and colloidally stable, with no measurable cytotoxicity. These materials would be of great use in various imaging applications, where a small size, ease of conjugation, and great colloidal stability for in vivo studies are needed.


Assuntos
Imunofluorescência , Corantes Fluorescentes/química , Imagem Óptica/métodos , Polímeros/química , Pontos Quânticos/química , Animais , Azidas/química , Linhagem Celular , Química Click , Drosophila melanogaster/embriologia , Imidazóis/química , Ligantes , Neurônios/citologia , Tamanho da Partícula , Transdução de Sinais , Compostos de Sulfidrila/química
5.
PLoS One ; 11(5): e0156365, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27224031

RESUMO

The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO), but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La. Therefore, we established an in vitro sumoylation assay for recombinant human La and analyzed its RNA-binding activity by electrophoretic mobility shift assays. We identified two novel SUMO-acceptor sites within the La protein located between the RNA recognition motif 1 and 2 and we demonstrate for the first time that sumoylation facilitates the RNA-binding of La to small RNA oligonucleotides representing the oligopyrimidine tract (TOP) elements from the 5' untranslated regions (UTR) of mRNAs encoding ribosomal protein L22 and L37 and to a longer RNA element from the 5' UTR of cyclin D1 (CCND1) mRNA in vitro. Furthermore, we show by RNA immunoprecipitation experiments that a La mutant deficient in sumoylation has impaired RNA-binding activity in cells. These data suggest that modulating the RNA-binding activity of La by sumoylation has important consequences on its functionality.


Assuntos
Ciclina D1/genética , Fosfoproteínas/metabolismo , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Regiões 3' não Traduzidas , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Fosfoproteínas/química , Ligação Proteica , Processamento de Proteína Pós-Traducional , Sumoilação
6.
Mol Cell Proteomics ; 15(2): 394-408, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26695766

RESUMO

Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system.


Assuntos
Axônios/metabolismo , Proteômica , Regeneração/genética , Traumatismos da Medula Espinal/metabolismo , Axônios/patologia , Axotomia , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/lesões , Sistema Nervoso Central/patologia , Humanos , Neurônios/metabolismo , Biossíntese de Proteínas/genética , Processamento de Proteína Pós-Traducional/genética , Transdução de Sinais/genética , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/cirurgia
7.
J Biol Chem ; 288(37): 26557-68, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23867460

RESUMO

Low-density lipoprotein receptors (LRPs) are present extensively on cells outside of the nervous system and classically exert roles in lipoprotein metabolism. It has been reported recently that LRP1 activation could phosphorylate the neurotrophin receptor TrkA in PC12 cells and increase neurite outgrowth from developing cerebellar granule cells. These intriguing findings led us to explore the hypothesis that LRP1 activation would activate canonical neurotrophic factor signaling in adult neurons and promote axonal regeneration after spinal cord injury. We now find that treatment of adult rat dorsal root ganglion neurons in vitro with LRP1 agonists (the receptor binding domain of α-2-macroglobulin or the hemopexin domain of matrix metalloproteinase 9) induces TrkC, Akt, and ERK activation; significantly increases neurite outgrowth (p < 0.01); and overcomes myelin inhibition (p < 0.05). These effects require Src family kinase activation, a classic LRP1-mediated Trk transactivator. Moreover, intrathecal infusions of LRP1 agonists significantly enhance sensory axonal sprouting and regeneration after spinal cord injury in rats compared with control-infused animals (p < 0.05). A significant role is established for lipoprotein receptors in sprouting and regeneration after CNS injury, identifying a novel class of therapeutic targets to explore for traumatic neurological disorders.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Regeneração Nervosa , Receptor trkC/metabolismo , Transdução de Sinais , Animais , Axônios/metabolismo , Feminino , Gânglios Espinais/metabolismo , Ligantes , Neuritos/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Ratos , Ratos Endogâmicos F344 , Regeneração , Traumatismos da Medula Espinal/patologia , Ativação Transcricional
8.
J Neurosci ; 32(38): 13206-20, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22993437

RESUMO

Previous studies have shown that injured dorsal column sensory axons extend across a spinal cord lesion site if axons are guided by a gradient of neurotrophin-3 (NT-3) rostral to the lesion. Here we examined whether continuous NT-3 delivery is necessary to sustain regenerated axons in the injured spinal cord. Using tetracycline-regulated (tet-off) lentiviral gene delivery, NT-3 expression was tightly controlled by doxycycline administration. To examine axon growth responses to regulated NT-3 expression, adult rats underwent a C3 dorsal funiculus lesion. The lesion site was filled with bone marrow stromal cells, tet-off-NT-3 virus was injected rostral to the lesion site, and the intrinsic growth capacity of sensory neurons was activated by a conditioning lesion. When NT-3 gene expression was turned on, cholera toxin ß-subunit-labeled sensory axons regenerated into and beyond the lesion/graft site. Surprisingly, the number of regenerated axons significantly declined when NT-3 expression was turned off, whereas continued NT-3 expression sustained regenerated axons. Quantification of axon numbers beyond the lesion demonstrated a significant decline of axon growth in animals with transient NT-3 expression, only some axons that had regenerated over longer distance were sustained. Regenerated axons were located in white matter and did not form axodendritic synapses but expressed presynaptic markers when closely associated with NG2-labeled cells. A decline in axon density was also observed within cellular grafts after NT-3 expression was turned off possibly via reduction in L1 and laminin expression in Schwann cells. Thus, multiple mechanisms underlie the inability of transient NT-3 expression to fully sustain regenerated sensory axons.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica/fisiologia , Regeneração Nervosa/fisiologia , Neurotrofina 3/uso terapêutico , Células Receptoras Sensoriais/fisiologia , Traumatismos da Medula Espinal/terapia , Análise de Variância , Animais , Antígenos/metabolismo , Axônios/efeitos dos fármacos , Transplante de Células/métodos , Células Cultivadas , Toxina da Cólera , Modelos Animais de Doenças , Doxiciclina/farmacologia , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Terapia Genética/métodos , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Laminina/metabolismo , Complexo Antígeno L1 Leucocitário/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neurotrofina 3/biossíntese , Neurotrofina 3/genética , Neurotrofina 3/farmacologia , Proteoglicanas/metabolismo , Ratos , Ratos Endogâmicos F344 , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/citologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Traumatismos da Medula Espinal/patologia , Transplante de Células-Tronco/métodos , Fatores de Tempo , Transfecção/métodos
9.
Exp Neurol ; 223(1): 19-27, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19699200

RESUMO

Locally generating new proteins in subcellular regions provide means to spatially and temporally modify protein content in polarized cells. Recent years have seen resurgence of the concept that axonal processes of neurons can locally synthesize proteins. Experiments from a number of groups have now shown that axonal protein synthesis helps to initiate growth, provides a means to respond to guidance cues, and generates retrograde signaling complexes. Additionally, there is increasing evidence that locally synthesized proteins provide functions beyond injury responses and growth in the mature peripheral nervous system. A key regulatory event in this translational regulation is moving the mRNA templates into the axonal compartment. Transport of mRNAs into axons is a highly regulated and specific process that requires interaction of RNA binding proteins with specific cis-elements or structures within the mRNAs. mRNAs are transported in ribonucleoprotein particles that interact with microtubule motor proteins for long-range axonal transport and likely use microfilaments for short-range movement in the axons. The mature axon is able to recruit mRNAs into translation with injury and possibly other stimuli, suggesting that mRNAs can be stored in a dormant state in the distal axon until needed. Axotomy triggers a shift in the populations of mRNAs localized to axons, indicating a dynamic regulation of the specificity of the axonal transport machinery. In this review, we discuss how axonal mRNA transport and localization are regulated to achieve specific changes in axonal RNA content in response to axonal stimuli.


Assuntos
Transporte Axonal/genética , Regeneração Nervosa/genética , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Proteínas dos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Dinâmica não Linear , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo
10.
J Cell Biol ; 178(6): 965-80, 2007 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-17785519

RESUMO

Subcellular regulation of protein synthesis requires the correct localization of messenger RNAs (mRNAs) within the cell. In this study, we investigate whether the axonal localization of neuronal mRNAs is regulated by extracellular stimuli. By profiling axonal levels of 50 mRNAs detected in regenerating adult sensory axons, we show that neurotrophins can increase and decrease levels of axonal mRNAs. Neurotrophins (nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3) regulate axonal mRNA levels and use distinct downstream signals to localize individual mRNAs. However, myelin-associated glycoprotein and semaphorin 3A regulate axonal levels of different mRNAs and elicit the opposite effect on axonal mRNA levels from those observed with neurotrophins. The axonal mRNAs accumulate at or are depleted from points of ligand stimulation along the axons. The translation product of a chimeric green fluorescent protein-beta-actin mRNA showed similar accumulation or depletion adjacent to stimuli that increase or decrease axonal levels of endogenous beta-actin mRNA. Thus, extracellular ligands can regulate protein generation within subcellular regions by specifically altering the localized levels of particular mRNAs.


Assuntos
Neurônios/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Actinas/genética , Actinas/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Hibridização In Situ , Glicoproteína Associada a Mielina/metabolismo , Fatores de Crescimento Neural/fisiologia , Regeneração Nervosa , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Semaforina-3A/metabolismo
11.
Proc Natl Acad Sci U S A ; 104(31): 12913-8, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17646655

RESUMO

A surprisingly large population of mRNAs has been shown to localize to sensory axons, but few RNA-binding proteins have been detected in these axons. These axonal mRNAs include several potential binding targets for the La RNA chaperone protein. La is transported into axonal processes in both culture and peripheral nerve. Interestingly, La is posttranslationally modified in sensory neurons by sumoylation. In axons, small ubiquitin-like modifying polypeptides (SUMO)-La interacts with dynein, whereas native La interacts with kinesin. Lysine 41 is required for sumoylation, and sumoylation-incompetent La(K41R) shows only anterograde transport, whereas WT La shows both anterograde and retrograde transport in axons. Thus, sumoylation of La determines the directionality of its transport within the axonal compartment, with SUMO-La likely recycling to the cell body.


Assuntos
Transporte Axonal , Axônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína SUMO-1/metabolismo , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Dineínas/metabolismo , Humanos , Cinesinas/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Mutação/genética , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Técnicas de Cultura de Tecidos
12.
Dev Neurobiol ; 67(9): 1166-82, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17514714

RESUMO

Neural cells are able to finely tune gene expression through post-transcriptional mechanisms. Localization of mRNAs to subcellular regions has been detected in neurons, oligodendrocytes, and astrocytes providing these domains with a locally renewable source of proteins. Protein synthesis in dendrites has most frequently been associated with synaptic plasticity, while axonally synthesized proteins appear to facilitate pathfinding and injury responses. For oligodendrocytes, mRNAs encoding several proteins for myelin formation are locally generated suggesting that this mechanism assists in myelination. Astrocytic processes have not been well studied but localization of GFAP mRNA has been demonstrated. Both RNA transport and localized translation are regulated processes. RNA transport appears to be highly selective and, at least in part, the destiny of individual mRNAs is determined in the nucleus. RNA-protein and protein-protein interactions determine which mRNAs are targeted to subcellular regions. Several RNA binding proteins that drive mRNA localization have also been shown to repress translation during transport. Activity of the translational machinery is also regulated in distal neural cell processes. Clinically, disruption of mRNA localization and/or localized mRNA translation may contribute to pathophysiology of fragile X mental retardation and spinal muscular atrophy. Axonal injury has been shown to activate localized protein synthesis, providing both a means to initiate regeneration and retrogradely signal injury to the cell body. Decreased capacity to transport mRNAs and translational machinery into distal processes could jeopardize the ability to respond to injury or local stimuli within axons and dendrites.


Assuntos
Neurônios/fisiologia , Biossíntese de Proteínas/fisiologia , Transporte de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Axônios/fisiologia , Proliferação de Células , Dendritos/fisiologia , Síndrome do Cromossomo X Frágil/genética , Humanos , Regeneração Nervosa/genética , Doenças Neurodegenerativas/genética , Plasticidade Neuronal/fisiologia
13.
J Neurochem ; 99(6): 1517-30, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17059558

RESUMO

Both cyclic AMP (cAMP) and nerve growth factor (NGF) have been shown to cause rapid activation of cAMP response element-binding protein (CREB) by phosphorylation of serine 133, but additional regulatory events contribute to CREB-targeted gene expression. Here, we have used stable transfection with a simple cAMP response element (CRE)-driven reporter to address the kinetics of CRE-dependent transcription during neuronal differentiation of PC12 cells. In naive cells, dibutyryl cAMP (dbcAMP) generated a rapid increase in CRE-driven luciferase activity by 5 h that returned to naive levels by 24 h. Luciferase induction after NGF treatment was delayed until 48 h when CRE-driven luciferase expression became TrkA dependent. Blocking histone deacetylase (HDAC) activity accelerated NGF-dependent CRE-driven luciferase expression by at least 24 h and resulted in a sustained cAMP-dependent expression of CRE-driven luciferase beyond 24 h. Inhibition of protein synthesis before stimulation with NGF or dbcAMP indicated that both stimuli induce expression of a transcriptional repressor that delays NGF-dependent and attenuates cAMP-dependent CRE-driven transcription. NGF caused a rapid but transient HDAC-dependent increase in inducible cAMP element repressor (ICER) expression, but ICER expression was sustained with increased cAMP. Depletion of ICER from PC12 cells indicated that HDAC-dependent ICER induction is responsible for the delay in CRE-dependent transcription after NGF treatment.


Assuntos
Modulador de Elemento de Resposta do AMP Cíclico/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Animais , Bucladesina/farmacologia , Carbazóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Imunoprecipitação da Cromatina/métodos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Interações Medicamentosas , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Inibidores Enzimáticos/farmacologia , Expressão Gênica/fisiologia , Imunoprecipitação/métodos , Alcaloides Indólicos , Luciferases/metabolismo , Células PC12/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fatores de Tempo , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...