Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 6(4)2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27983631

RESUMO

We used circular dichroism (CD) to study differences in CD spectra between α-, δ-, and methylated-α-tocopherol in solvents with different polarities. CD spectra of the different tocopherol structures differ from each other in intensity and peak locations, which can be attributed to chromanol substitution and the ability to form hydrogen bonds. In addition, each structure was examined in different polarity solvents using the Reichardt index-a measure of the solvent's ionizing ability, and a direct measurement of solvent-solute interactions. Differences across solvents indicate that hydrogen bonding is a key contributor to CD spectra at 200 nm. These results are a first step in examining the hydrogen bonding abilities of vitamin E in a lipid bilayer.

2.
Soft Matter ; 12(47): 9417-9428, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27801465

RESUMO

Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of different lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. These results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.


Assuntos
Membrana Celular/química , Colesterol/química , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Fosfatidilcolinas/química , Simulação de Dinâmica Molecular , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA