Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11861, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481630

RESUMO

Since the attribution of the bio-duck call to Antarctic minke whales (AMW Balaenoptera bonaerensis), different studies have retrospectively identified several bio-duck call types at various sites throughout the Southern Hemisphere. The function of their vocal behavior however, remains largely unknown. Further insights into their repertoire usage may help to reveal the function of their calls. Here, we use passive acoustic monitoring (PAM) data collected across six locations throughout the Weddell Sea (WS) in 2013 and from PALAOA Station (Ekström Ice Shelf, eastern WS) in 2015, 2016 and 2017. In 2013, we detected 11 bio-duck call types throughout the WS between May and December, with additional acoustic activity in February on the western recorder AMW calls fell into four general call clusters. Seasonal patterns of calls showed variability between locations and years. Furthermore, this is the first study to show that similar to other baleen whale species, AMWs also produce songs.


Assuntos
Baleia Anã , Animais , Regiões Antárticas , Estudos Retrospectivos , Patos , Acústica , Cetáceos
2.
J Acoust Soc Am ; 153(6): 3301, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318450

RESUMO

Passive acoustic monitoring (PAM) can be used to monitor acoustic presence and behaviour of cetaceans, providing continuous, long-term, and seasonally unbiased data. The efficiency of PAM methods, however, depends on the ability to detect and correctly interpret acoustic signals. The upcall is the most prevalent vocalization of the southern right whale (Eubalaena australis) and is commonly used as a basis for PAM studies on this species. However, previous studies report difficulties to distinguish between southern right whale upcalls and similar humpback whale (Megaptera novaeangliae) vocalizations with certainty. Recently, vocalizations comparable to southern right whale upcalls were detected off Elephant Island, Antarctica. In this study, these vocalizations were structurally analyzed, and call characteristics were compared to (a) confirmed southern right whale vocalizations recorded off Argentina and (b) confirmed humpback whale vocalizations recorded in the Atlantic Sector of the Southern Ocean. Based on call features, detected upcalls off Elephant Island could be successfully attributed to southern right whales. Measurements describing slope and bandwidth were identified as the main differences in call characteristics between species. With the newly gained knowledge from this study, additional data can be analyzed providing further insight into temporal occurrence and migratory behaviour of southern right whales in Antarctic waters.


Assuntos
Jubarte , Animais , Regiões Antárticas , Vocalização Animal , Acústica , Argentina
3.
Sci Rep ; 12(1): 13924, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978069

RESUMO

The Atlantic sector of the Southern Ocean (ASSO) has one of the highest densities of Antarctic krill (Euphausia superba) compared to other polar and subpolar regions, which attracts migratory baleen whale species to aggregate in this area for feeding. Humpback whales (Megaptera novaeangliae) also sing extensively while on the Southern Ocean feeding grounds which allows for the exploration of song similarity between feeding grounds and breeding populations which helps to understand population mixing. The results of comparative song analyses between the ASSO and the Ecuadorian and Brazilian breeding populations and recordings from the Chilean, South African and Namibian migration routes/mid-latitude feeding grounds revealed that individuals from at least three humpback whale breeding populations most likely migrate to shared feeding grounds in the ASSO. Humpback whales from different populations potentially mix at different times (i.e., years) at feeding hotspots in variable locations. The ASSO seems to provide sufficient prey resources and seems to present an important area for both cultural and maybe even genetic exchange between populations supporting the maintenance of large gene pools. Assuming that multi-population feeding hotspots are also suitable habitat for krill and other krill-dependent predators, these areas in the ASSO should be carefully managed integrating population, ecosystem and fisheries management.


Assuntos
Euphausiacea , Jubarte , Animais , Regiões Antárticas , Oceano Atlântico , Ecossistema , Pesqueiros
4.
J Acoust Soc Am ; 151(2): 1380, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35232073

RESUMO

Climate-driven changes are affecting sea ice conditions off Tasiilaq, Southeast Greenland, with implications for marine mammal distributions. Knowledge about marine mammal presence, biodiversity, and community composition is key to effective conservation and management but is lacking, especially during winter months. Seasonal patterns of acoustic marine mammal presence were investigated relative to sea ice concentration at two recording sites between 2014 and 2018, with one (65.6°N, 37.4°W) or three years (65.5°N, 38.0°W) of passive acoustic recordings. Seven marine mammal species were recorded. Bearded seals were acoustically dominant during winter and spring, whereas sperm, humpback, and fin whales dominated during the sea ice-free summer and autumn. Narwhals, bowhead, and killer whales were recorded only rarely. Song-fragments of humpback whales and acoustic presence of fin whales in winter suggest mating-associated behavior taking place in the area. Ambient noise levels in 1/3-octave level bands (20, 63, 125, 500, 1000, and 4000 Hz), ranged between 75.6 to 105 dB re 1 µPa. This study provides multi-year insights into the coastal marine mammal community composition off Southeast Greenland and suggests that the Tasiilaq area provides suitable habitat for various marine mammal species year-round.


Assuntos
Baleia Franca , Baleia Comum , Orca , Acústica , Animais , Groenlândia , Mamíferos
5.
Sci Rep ; 11(1): 18806, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552129

RESUMO

Humpback whale males are known to sing on their low-latitude breeding grounds, but it is well established that songs are also commonly produced 'off-season' on the feeding grounds or during migration. This opens exciting opportunities to investigate migratory aggregations, study humpback whale behavioral plasticity and potentially even assign individual singers to specific breeding grounds. In this study, we analyzed passive acoustic data from 13 recording positions and multiple years (2011-2018) within the Atlantic sector of the Southern Ocean (ASSO). Humpback whale song was detected at nine recording positions in five years. Most songs were recorded in May, austral fall, coinciding with the rapid increase in sea ice concentration at most recording positions. The spatio-temporal pattern in humpback whale singing activity on Southern Ocean feeding grounds is most likely shaped by local prey availability and humpback whale migratory strategies. Furthermore, the comparative analyses of song structures clearly show a differentiation of two song groups, of which one was solely recorded at the western edge of the ASSO and the other song group was recorded throughout the ASSO. This new finding suggests a common feeding ground occupation by multiple humpback whale populations in the ASSO, allowing for cultural and potentially even genetic exchange among populations.


Assuntos
Comportamento Alimentar , Jubarte , Vocalização Animal , Animais , Comportamento Alimentar/psicologia , Feminino , Masculino , Comportamento Social , Análise Espaço-Temporal , Gravação em Fita
6.
J Acoust Soc Am ; 149(6): 4649, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34241469

RESUMO

Acoustic metrics (AMs) aggregate the acoustic information of a complex signal into a unique number, assisting our interpretation of acoustic environments and providing a rapid and intuitive solution to analyze large passive acoustic datasets. Manual identification and characterization of intraspecific call trait variation has been largely used in a variety of sonic taxa. However, it is time consuming, relatively subjective, and measurements can suffer from low replicability. This study assesses the potential of using a combination of standardized and automatically computed AMs to train a supervised classification model, as an alternative to discrimination protocols and manual measurements to categorize humpback whale (Megaptera novaeangliae) song units from the Southern Ocean. Our random forest model successfully discriminated between the 12 humpback whale unit types (UT), achieving an average classification accuracy of 84%. UTs were further described and discussed in the context of the hierarchical structure of humpback whale song in the Southern Ocean. We show that accurate discriminant models based on relevant AM combinations provide an interesting automated solution to use for simple, rapid, and highly reproducible identification and comparison of vocalization types in humpback whale populations, with the potential to be applied to both aquatic and terrestrial contexts, on other vocal species, and over different acoustic scales.


Assuntos
Jubarte , Acústica , Animais , Oceano Atlântico , Benchmarking , Oceanos e Mares , Vocalização Animal
7.
R Soc Open Sci ; 8(5): 201142, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34084537

RESUMO

This study investigates the relevance of the Elephant Island (EI) region for Southern Hemisphere fin whales (Balaenoptera physalus) in their annual life cycle. We collected 3 years of passive acoustic recordings (January 2013 to February 2016) northwest of EI to calculate time series of fin whale acoustic indices, daily acoustic occurrence, spectrograms, as well as the abundance of their 20 Hz pulses. Acoustic backscatter strength, sea ice concentration and chlorophyll-a composites provided concurrent environmental information for graphic comparisons. Acoustic interannual, seasonal and diel patterns together with visual information and literature resources were used to define the period of occupancy and to infer potential drivers for their behaviour. Spectral results suggest that these fin whales migrate annually to and from offshore central Chile. Acoustic data and visual information reveal their arrival at EI in December to feed without producing their typical 20 Hz pulse. For all 3 years, acoustic activity commences in February, peaks in May and decreases in August, in phase with the onset of their breeding season. Our results emphasize the importance of EI for fin whales throughout most of the year. Our recommendation is to consider EI for establishing a marine protected area to expedite the recovery of this vulnerable species.

8.
Commun Biol ; 4(1): 790, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172834

RESUMO

Humpback whales are thought to undertake annual migrations between their low latitude breeding grounds and high latitude feeding grounds. However, under specific conditions, humpback whales sometimes change their migratory destination or skip migration overall. Here we document the surprising persistent presence of humpback whales in the Atlantic sector of the Southern Ocean during five years (2011, 2012, 2013, 2017, and 2018) using passive acoustic data. However, in the El Niño years 2015 and 2016, humpback whales were virtually absent. Our data show that humpback whales are systematically present in the Atlantic sector of the Southern Ocean and suggest that these whales are particularly sensitive to climate oscillations which have profound effects on winds, sea ice extent, primary production, and especially krill productivity.


Assuntos
Migração Animal , El Niño Oscilação Sul , Jubarte , Animais , Ecologia , Oceanos e Mares , Vocalização Animal
9.
Science ; 371(6529)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542110

RESUMO

Oceans have become substantially noisier since the Industrial Revolution. Shipping, resource exploration, and infrastructure development have increased the anthrophony (sounds generated by human activities), whereas the biophony (sounds of biological origin) has been reduced by hunting, fishing, and habitat degradation. Climate change is affecting geophony (abiotic, natural sounds). Existing evidence shows that anthrophony affects marine animals at multiple levels, including their behavior, physiology, and, in extreme cases, survival. This should prompt management actions to deploy existing solutions to reduce noise levels in the ocean, thereby allowing marine animals to reestablish their use of ocean sound as a central ecological trait in a healthy ocean.


Assuntos
Organismos Aquáticos/fisiologia , Audição , Ruído , Animais , Oceanos e Mares
10.
R Soc Open Sci ; 7(10): 192112, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33204440

RESUMO

The recent identification of the bio-duck call as Antarctic minke whale (AMW) vocalization allows the use of passive acoustic monitoring to retrospectively investigate year-round spatial-temporal patterns in minke whale occurrence in ice-covered areas. Here, we present an analysis of AMW occurrence patterns based on a 9-year passive acoustic dataset (2008-2016) from 21 locations throughout the Atlantic sector of the Southern Ocean (Weddell Sea). AMWs were detected acoustically at all mooring locations from May to December, with the highest presence between August and November (bio-duck calls present at more than 80% of days). At the southernmost recording locations, the bio-duck call was present up to 10 months of the year. Substantial inter-annual variation in the seasonality of vocal activity correlated to variation in local ice concentration. Our analysis indicates that part of the AMW population stays in the Weddell Sea during austral winter. The period with the highest acoustic presence in the Weddell Sea (September-October) coincides with the timing of the breeding season of AMW in lower latitudes. The bio-duck call could therefore play a role in mating, although other behavioural functions of the call cannot be excluded to date.

11.
R Soc Open Sci ; 7(12): 201347, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33489279

RESUMO

Southern Hemisphere humpback whales (Megaptera novaeangliae) inhabit a wide variety of ecosystems including both low- and high-latitude areas. Understanding the habitat selection of humpback whale populations is key for humpback whale stock management and general ecosystem management. In the Atlantic sector of the Southern Ocean (ASSO), the investigation of baleen whale distribution by sighting surveys is temporally restricted to the austral summer. The implementation of autonomous passive acoustic monitoring, in turn, allows the study of vocal baleen whales year-round. This study describes the results of analysing passive acoustic data spanning 12 recording positions throughout the ASSO applying a combination of automatic and manual analysis methods to register humpback whale acoustic activity. Humpback whales were present at nine recording positions with higher acoustic activities towards lower latitudes and the eastern and western edges of the ASSO. During all months, except December (the month with the fewest recordings), humpback whale acoustic activity was registered in the ASSO. The acoustic presence of humpback whales at various locations in the ASSO confirms previous observations that part of the population remains in high-latitude waters beyond austral summer, presumably to feed. The spatial and temporal extent of humpback whale presence in the ASSO suggests that this area may be used by multiple humpback whale breeding populations as a feeding ground.

12.
J Acoust Soc Am ; 144(2): 740, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30180708

RESUMO

Evaluation of the performance of computer-based algorithms to automatically detect mammalian vocalizations often relies on comparisons between detector outputs and a reference data set, generally obtained by manual annotation of acoustic recordings. To explore the reproducibility of these annotations, inter- and intra-analyst variability in manually annotated Antarctic blue whale (ABW) Z-calls are investigated by two analysts in acoustic data from two ocean basins representing different scenarios in terms of call abundance and background noise. Manual annotations exhibit strong inter- and intra-analyst variability, with less than 50% agreement between analysts. This variability is mainly caused by the difficulty of reliably and reproducibly distinguishing single calls in an ABW chorus made of overlaying distant calls. Furthermore, the performance of two automated detectors, based on spectrogram correlation or subspace-detection strategy, is evaluated by comparing detector output to a "conservative" manually annotated reference data set, which comprises only analysts' matching events. This study highlights the need for a standardized approach for human annotations and automatic detections, including a quantitative description of their performance, to improve the comparability of acoustic data, which is particularly relevant in the context of collaborative approaches in collecting and analyzing large passive acoustic data sets.


Assuntos
Acústica/instrumentação , Balaenoptera/fisiologia , Vocalização Animal , Animais , Ruído/efeitos adversos , Padrões de Referência , Reprodutibilidade dos Testes , Razão Sinal-Ruído
13.
R Soc Open Sci ; 4(1): 160370, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28280544

RESUMO

This paper describes the natural variability of ambient sound in the Southern Ocean, an acoustically pristine marine mammal habitat. Over a 3-year period, two autonomous recorders were moored along the Greenwich meridian to collect underwater passive acoustic data. Ambient sound levels were strongly affected by the annual variation of the sea-ice cover, which decouples local wind speed and sound levels during austral winter. With increasing sea-ice concentration, area and thickness, sound levels decreased while the contribution of distant sources increased. Marine mammal sounds formed a substantial part of the overall acoustic environment, comprising calls produced by Antarctic blue whales (Balaenoptera musculus intermedia), fin whales (Balaenoptera physalus), Antarctic minke whales (Balaenoptera bonaerensis) and leopard seals (Hydrurga leptonyx). The combined sound energy of a group or population vocalizing during extended periods contributed species-specific peaks to the ambient sound spectra. The temporal and spatial variation in the contribution of marine mammals to ambient sound suggests annual patterns in migration and behaviour. The Antarctic blue and fin whale contributions were loudest in austral autumn, whereas the Antarctic minke whale contribution was loudest during austral winter and repeatedly showed a diel pattern that coincided with the diel vertical migration of zooplankton.

14.
J Acoust Soc Am ; 138(1): 267-78, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233026

RESUMO

Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.


Assuntos
Acústica , Biologia Marinha/métodos , Vocalização Animal , Baleias/fisiologia , Distribuição Animal , Animais , Densidade Demográfica , Probabilidade , Estudos de Amostragem , Espectrografia do Som , Fatores de Tempo
15.
Biol Lett ; 10(4): 20140175, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24759372

RESUMO

For decades, the bio-duck sound has been recorded in the Southern Ocean, but the animal producing it has remained a mystery. Heard mainly during austral winter in the Southern Ocean, this ubiquitous sound has been recorded in Antarctic waters and contemporaneously off the Australian west coast. Here, we present conclusive evidence that the bio-duck sound is produced by Antarctic minke whales (Balaenoptera bonaerensis). We analysed data from multi-sensor acoustic recording tags that included intense bio-duck sounds as well as singular downsweeps that have previously been attributed to this species. This finding allows the interpretation of a wealth of long-term acoustic recordings for this previously acoustically concealed species, which will improve our understanding of the distribution, abundance and behaviour of Antarctic minke whales. This is critical information for a species that inhabits a difficult to access sea-ice environment that is changing rapidly in some regions and has been the subject of contentious lethal sampling efforts and ongoing international legal action.


Assuntos
Baleia Anã/fisiologia , Vocalização Animal , Acústica , Animais , Regiões Antárticas , Oceanos e Mares
16.
PLoS One ; 8(9): e73007, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039844

RESUMO

Humpback whales migrate between relatively unproductive tropical or temperate breeding grounds and productive high latitude feeding areas. However, not all individuals of a population undertake the annual migration to the breeding grounds; instead some are thought to remain on the feeding grounds year-round, presumably to avoid the energetic demands of migration. In the Southern Hemisphere, ice and inclement weather conditions restrict investigations of humpback whale presence on feeding grounds as well as the extent of their southern range. Two years of near-continuous recordings from the PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Ekström Iceshelf, 70°31'S, 8°13'W) are used to explore the acoustic presence of humpback whales in an Antarctic coastal area. Humpback whale calls were present during nine and eleven months of 2008 and 2009, respectively. In 2008, calls were present in January through April, June through August, November and December, whereas in 2009, calls were present throughout the year, except in September. Calls occurred in un-patterned sequences, representing non-song sound production. Typically, calls occurred in bouts, ranging from 2 to 42 consecutive days with February, March and April having the highest daily occurrence of calls in 2008. In 2009, February, March, April and May had the highest daily occurrence of calls. Whales were estimated to be within a 100 km radius off PALAOA. Calls were also present during austral winter when ice cover within this radius was >90%. These results demonstrate that coastal areas near the Antarctic continent are likely of greater importance to humpback whales than previously assumed, presumably providing food resources year-round and open water in winter where animals can breathe.


Assuntos
Temperatura Baixa , Jubarte/fisiologia , Vocalização Animal , Migração Animal , Animais , Regiões Antárticas , Feminino , Camada de Gelo , Masculino , Dinâmica Populacional , Estações do Ano , Espectrografia do Som
18.
Trends Ecol Evol ; 25(7): 419-27, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20483503

RESUMO

The underwater environment is filled with biotic and abiotic sounds, many of which can be important for the survival and reproduction of fish. Over the last century, human activities in and near the water have increasingly added artificial sounds to this environment. Very loud sounds of relatively short exposure, such as those produced during pile driving, can harm nearby fish. However, more moderate underwater noises of longer duration, such as those produced by vessels, could potentially impact much larger areas, and involve much larger numbers of fish. Here we call attention to the urgent need to study the role of sound in the lives of fish and to develop a better understanding of the ecological impact of anthropogenic noise.


Assuntos
Peixes/fisiologia , Ruído , Comunicação Animal , Animais , Comportamento Animal , Ecossistema , Pesqueiros , Audição/fisiologia , Humanos , Comportamento Predatório , Estações do Ano , Água do Mar , Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...