Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Stomatol Oral Maxillofac Surg ; : 101916, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763267

RESUMO

INTRODUCTION: This paper employs finite element analysis to assess the biomechanical behavior of surgically assisted rapid palatal expansion (SARPE) with a bone-borne transpalatal distractor (TPD) by varying surgical parameters. MATERIAL AND METHODS: Nine models were constructed to scrutinize the effects of pterygomaxillary disjunction (PMD), lateral osteotomy positioning, and TPD placement on displacement profiles and Von Mises stresses. These models encompassed variations such as no, unilateral or bilateral PMD, asymmetrical lateral osteotomy, and five TPD locations. RESULTS: Performing a PMD reduces posterior resistance to transverse expansion, resulting in 10-20 % stress reduction around the maxillofacial complex. No significant changes in horizontal tipping were observed post-PMD. The asymmetric lateral osteotomy model exhibited larger displacements on the side with a more superiorly positioned osteotomy. Reduced stresses were observed at the maxillary body and medial pterygoid plate (superiorly), while increased stresses were observed at the medial (inferiorly) and lateral pterygoid plates. More posterior TPD placement facilitated more parallel expansion thus less horizontal tipping, albeit with increased vertical tipping. DISCUSSION: SARPE procedures (distractor and osteotomy positions) can be tailored based on desired outcomes. PMD reduces stress within the maxillofacial complex but doesn't significantly affect tipping. Higher lateral osteotomies lead to increased displacements, more posterior distractors to more parallel expansion.

2.
Biomacromolecules ; 25(3): 1448-1467, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38412382

RESUMO

Despite all recent progresses in nerve tissue engineering, critical-sized nerve defects are still extremely challenging to repair. Therefore, this study targets the bridging of critical nerve defects and promoting an oriented neuronal outgrowth by engineering innovative nerve guidance conduits (NGCs) synergistically possessing exclusive topographical, chemical, and mechanical cues. To do so, a mechanically adequate mixture of polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA) was first carefully selected as base material to electrospin nanofibrous NGCs simulating the extracellular matrix. The electrospinning process was performed using a newly designed 2-pole air gap collector that leads to a one-step deposition of seamless NGCs having a bilayered architecture with an inner wall composed of highly aligned fibers and an outer wall consisting of randomly oriented fibers. This architecture is envisaged to afford guidance cues for the extension of long neurites on the underlying inner fiber alignment and to concurrently provide a sufficient nutrient supply through the pores of the outer random fibers. The surface chemistry of the NGCs was then modified making use of a hollow cathode discharge (HCD) plasma reactor purposely designed to allow an effective penetration of the reactive species into the NGCs to eventually treat their inner wall. X-ray photoelectron spectroscopy (XPS) results have indeed revealed a successful O2 plasma modification of the inner wall that exhibited a significantly increased oxygen content (24 → 28%), which led to an enhanced surface wettability. The treatment increased the surface nanoroughness of the fibers forming the NGCs as a result of an etching effect. This effect reduced the ultimate tensile strength of the NGCs while preserving their high flexibility. Finally, pheochromocytoma (PC12) cells were cultured on the NGCs to monitor their ability to extend neurites which is the base of a good nerve regeneration. In addition to remarkably improved cell adhesion and proliferation on the plasma-treated NGCs, an outstanding neural differentiation occurred. In fact, PC12 cells seeded on the treated samples extended numerous long neurites eventually establishing a neural network-like morphology with an overall neurite direction following the alignment of the underlying fibers. Overall, PCL/PLGA NGCs electrospun using the 2-pole air gap collector and O2 plasma-treated using an HCD reactor are promising candidates toward a full repair of critical nerve damage.


Assuntos
Neuritos , Alicerces Teciduais , Ratos , Animais , Alicerces Teciduais/química , Neuritos/fisiologia , Engenharia Tecidual/métodos , Regeneração Nervosa , Crescimento Neuronal
3.
Polymers (Basel) ; 15(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904505

RESUMO

The nonlinear behaviour of fibre-reinforced polymer composites (FRPC) in transverse loading is mainly induced by the constituent polymer matrix. The thermoset and thermoplastic matrices are typically rate- and temperature-dependent, complicating the dynamic material characterization process. Under dynamic compression, the microstructure of the FRPC develops local strains and local strain rates whose values can be much higher than those applied at macroscopic level. The correlation between the local (microscopic) values and the measurable (macroscopic) ones still present challenges when applying the strain rate in the range 10-3-103 s-1. This paper presents an in-house uniaxial compression test setup to provide robust stress-strain measurements applying strain rates up to 100 s-1. A semi-crystalline thermoplastic polyetheretherketone (PEEK) and a toughened thermoset epoxy PR520 are assessed and characterized. The thermomechanical response of the polymers is further modelled using an advanced glassy polymer model, naturally capturing the isothermal to adiabatic transition. A micromechanical model of a unidirectional composite undergoing dynamic compression is developed by using both validated polymers as matrices reinforced by carbon fibres (CF) using Representative Volume Element (RVE) models. These RVEs are used to analyse the correlation between the micro- and macroscopic thermomechanical response of the CF/PR520 and CF/PEEK systems investigated at intermediate to high strain rates. Both systems experience an excessive strain localization with local plastic strain about 19% when a macroscopic strain of 3.5% is applied. The comparison of using a thermoplastic and a thermoset as a matrix in composites is discussed with regard to the rate-dependence, the interface debonding and the self-heating effect.

4.
Macromol Rapid Commun ; 44(8): e2300020, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36840963

RESUMO

Natural fiber-reinforced composites are gaining increased interest for their significantly reduced carbon footprint compared to conventional glass or carbon fiber-based counterparts. In this study, natural fibers are used in a resorcinol-based epoxy resin that is thermally reshapable at higher temperatures (>180 °C) by using fast exchanging siloxane bonds, catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene. Stress relaxation times of only about 6 s at 220 °C can be reached. A resorcinol-based epoxy compound is selected because it can be derived from cellulose, opening ways for more sustainable and reshapable composite materials. In a last step of the research, the low viscosity vitrimer formulation (<200 mPa s) is applied to make a flax fiber-reinforced composite using an industrially relevant vacuum-assisted resin infusion process. A section of this composite is successfully reshaped, which allows for envisioning a second life for natural fiber-reinforced composites.


Assuntos
Linho , Siloxanas , Linho/química , Fibra de Carbono , Celulose , Viscosidade
6.
Materials (Basel) ; 15(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955256

RESUMO

Formation of a habit plane during martensitic transformation is related to an invariant plane strain transformation, which involves dislocation glide and twins. In the current work, the Phenomenological Theory of Martensitic Transformation (PTMT) is employed to study the crystallographic features while the phase field simulation is used to study the microstructure evolution for martensitic transformation of Ti-6Al-4V alloy. Results show that mechanical constraints play a key role in the microstructure evolution. It is shown that a twinned structure with very small twinned variants is geometrically difficult to form due to the lattice parameters of Ti-6Al-4V alloy. It is concluded that the predicted habit plane from the PTMT is consistent with results of the micro-elastic theory. The formation of a triangular morphology is favored geometrically and elastically.

7.
J Am Chem Soc ; 144(27): 12280-12289, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35758403

RESUMO

To develop siloxane-containing vitrimers with fast dynamic characteristics, different mechanistic pathways have been investigated using a range of catalysts. In particular, one siloxane exchange pathway has been found to show a fast dynamic behavior in a useful temperature range (180-220 °C) for its application in vitrimers. The mechanism is found to involve 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD) as an organic catalyst in the presence of hydroxyl groups. Using this new mechanistic approach, vitrimers with ultrafast stress-relaxation characteristics (relaxation times below 10 s) have been prepared with a readily available epoxy resin and siloxane-amine hardener. Subsequently, the low viscosity siloxane-containing vitrimer resin enabled the preparation of glass fiber-reinforced vitrimer composites using an industrially relevant vacuum-assisted resin infusion technique. The resulting composite was successfully thermoformed into a new shape, which makes it possible to envision a second life for such highly engineered materials.


Assuntos
Siloxanas , Viscosidade
8.
Polymers (Basel) ; 14(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35631824

RESUMO

The recyclability and improved suitability for high-volume production make fiber-reinforced thermoplastic polymers (FRP) attractive alternatives for the current thermoset-based ones. However, while they are more ductile than their thermoset counterparts, their behavior is also more susceptible to environmental conditions such as humidity, temperature, and strain rate. The latter can trigger self-heating and thermal softening effects. The role of matrix self-heating in FRP subjected to transverse loading is investigated using micromechanical modeling. Particularly, the effect of self-heating, strain rate and conductivity of the fiber-matrix interface is illustrated. It is shown that local heating of the matrix is dominant for the homogenized behavior of the material. Although the global homogenized temperature increase is limited, local thermal softening can induce premature failure. It is shown that the effect of thermal softening can be more prominent with increasing volume fraction, increasing strain rate, and lower interface conductivity.

9.
Polymers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054704

RESUMO

Recent development in the field of additive manufacturing, also known as three-dimensional (3D) printing, has allowed for the incorporation of continuous fiber reinforcement into 3D-printed polymer parts. These fiber reinforcements allow for the improvement of the mechanical properties, but compared to traditionally produced composite materials, the fiber volume fraction often remains low. This study aims to evaluate the in-nozzle impregnation of continuous aramid fiber reinforcement with glycol-modified polyethylene terephthalate (PETG) using a modified, low-cost, tabletop 3D printer. We analyze how dimensional printing parameters such as layer height and line width affect the fiber volume fraction and fiber dispersion in printed composites. By varying these parameters, unidirectional specimens are printed that have an inner structure going from an array-like to a continuous layered-like structure with fiber loading between 20 and 45 vol%. The inner structure was analyzed by optical microscopy and Computed Tomography (µCT), achieving new insights into the structural composition of printed composites. The printed composites show good fiber alignment and the tensile modulus in the fiber direction increased from 2.2 GPa (non-reinforced) to 33 GPa (45 vol%), while the flexural modulus in the fiber direction increased from 1.6 GPa (non-reinforced) to 27 GPa (45 vol%). The continuous 3D reinforced specimens have quality and properties in the range of traditional composite materials produced by hand lay-up techniques, far exceeding the performance of typical bulk 3D-printed polymers. Hence, this technique has potential for the low-cost additive manufacturing of small, intricate parts with substantial mechanical performance, or parts of which only a small number is needed.

10.
Sci Rep ; 11(1): 14034, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234245

RESUMO

Temporomandibular joint (TMJ) replacement with an implant is only used when all other conservative treatments fail. Despite the promising short-term results, the long-term implications of TMJ replacement in masticatory function are not fully understood. Previous human and animal studies have shown that perturbations to the normal masticatory function can lead to morphological and functional changes in the craniomaxillofacial system. A clearer understanding of the biomechanical implications of TMJ replacement in masticatory function may help identify design shortcomings that hinder their long-term success. In this study, patient-specific finite element models of the intact and implanted mandible were developed and simulated under four different biting tasks. In addition, the impact of re-attaching of the lateral pterygoid was also evaluated. The biomechanics of both models was compared regarding both mandibular displacements and principal strain patterns. The results show an excessive mediolateral and anteroposterior displacement of the TMJ implant compared to the intact joint in three biting tasks, namely incisor (INC), left moral (LML), and right molar (RML) biting. The main differences in principal strain distributions were found across the entire mandible, most notably from the symphysis to the ramus of the implanted side. Furthermore, the re-attachment of the lateral pterygoid seems to increase joint anteroposterior displacement in both INC, LML and RML biting while reducing it during LGF. Accordingly, any new TMJ implant design must consider stabilising both mediolateral and anteroposterior movement of the condyle during biting activities and promoting a more natural load transmission along the entire mandible.


Assuntos
Fenômenos Biomecânicos , Prótese Articular , Mandíbula/cirurgia , Modelos Anatômicos , Articulação Temporomandibular/cirurgia , Algoritmos , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Mandíbula/anatomia & histologia , Desenho de Prótese , Articulação Temporomandibular/anatomia & histologia , Tomografia Computadorizada por Raios X , Resultado do Tratamento
11.
Materials (Basel) ; 14(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070105

RESUMO

UD glass/PA6 coupons with an open hole are subjected to tensile and compressive loading. Three layups: [0/90]5s, [+45/-45]5s and [+45/0/-45/90]3s with a shape based on ASTM D5766 were tested. Both monotonic loading as well as loading-unloading-reloading tests were executed. The strain field on the sample surface was measured with digital image correlation. This allowed identifying the distribution of the strain field during loading, permanent deformation and the evolution of the sample elastic modulus. This information is not frequently measured. Yet, it is vital for the development and validation of advanced failure models. The results indicate that the thermoplastic matrix allows large plastic deformation under tensile loading for the specimens with layup [+45/-45]5s. In addition, the specimen elastic modulus reduces by about 70%. The other layups show minor permanent deformation, while the elastic modulus reduces by up to 15%. Furthermore, the quasi-isotropic laminate shows a significant post-failure load-bearing capacity under compression loading. The results are complemented with post-mortem damage and fracture observations using optical microscopy and ultrasound inspection.

12.
Ultrasonics ; 116: 106482, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102523

RESUMO

A new extension of the shear deformation theory to fifth order in order to calculate the spectrum of Lamb waves in orthotropic media over a wide frequency range is developed and analyzed. The aspiration of the proposed method is to create an alternative framework to exhaustive 3D elasticity based solutions by increasing computational efficiency without losing accuracy, nor robustness. A new computational framework is introduced which allows to estimate the dispersion curves for the first nine symmetric and nine anti-symmetric Lamb modes. Analytically calculated dispersion curves using 5-SDT for different propagation directions and polar plots for selected frequency of different materials are compared with the results from both the semi analytical finite element method, and lower order shear deformation theories. Careful analysis for individual laminae and for symmetric composite laminates exhibits a good agreement between the new higher order plate theory and the semi analytical finite element method over an extensive frequency range. In addition, attenuation plots show that the proposed method can also be used for visco-elastic materials (or highly damped materials). The advantage of the new higher order plate theory and its numerical implementation is that it is much more computationally efficient compared to comprehensive methods as Lamb wave polar plots of composite plates as function of incidence angle, polar angle and frequency can be calculated in less than a second on a standard laptop. Consequently, the use of this framework in inversion routines opens up the possibility of quasi real-time Structural Health Monitoring for visco-elastic composites covering a sufficiently wide frequency range.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33798079

RESUMO

In the context of designing a next-generation ultrasonic polar scan (UPS) measurement system for viscoelastic material characterization, a novel approach is proposed, which draws on a set of cylindrically focused emitters in conjunction with a circular phased array (C-PA) receiver in order to create a portable measurement system while improving the data quality and ease the data interpretation. To explore the potential of the new approach and determine its optimal design parameters, a 3-D analytical model is presented to numerically simulate UPS experiments with the proposed system. Furthermore, a postprocessing procedure is worked out to treat the acquired raw data with the aim to deal with the integrating effect of finite size transducers and directly reconstruct the angle-dependent plane wave reflection coefficients of the sample under study. As the accuracy of the reconstruction heavily depends on various design parameters, a parameter study focusing on the influence of three main experimental parameters is performed to guide the optimal design. For each of these parameter studies, the UPS simulation results have been inverted, and the errors on the estimated C-tensor parameters have been deduced. First, it is shown that, for a given frequency, the radius of the C-PA must be large enough to capture both the specular and nonspecular reflected field, which is crucial to assure a correct reconstruction of the plane wave characteristics and find proper estimates of the C-tensor parameters. Second, the impact of the emitter and receiver lengths on the quality of the reconstruction and the C-tensor parameters has been investigated, yielding superior results upon increasing either of them. Finally, a dedicated study of the pitch of the C-PA elements and the angular range of the cylindrically focused emitters shows that aliasing effects disturb the results if the pitch is too large. However, this effect can somewhat be mitigated by employing multiple emitters with a restricted angular range. Using the knowledge of the abovementioned parameter studies, a simulated UPS experiment using a proper set of design parameters is performed for a cross-ply carbon epoxy laminate. The postprocessed reconstruction based on these data shows an excellent agreement with the theoretical plane wave results.

14.
Disabil Rehabil Assist Technol ; 16(1): 27-39, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226898

RESUMO

PURPOSE: Ankle foot orthosis (AFO) stiffness is a key characteristic that determines how much support or restraint an AFO can provide. Thus, the goal of the current study is twofold: (1) to quantify AFO prescriptions for a group of patients; (2) to evaluate what impact these AFO have on the push-off phase. METHOD: Six patients were included in the study. Three patients were prescribed an AFO for ankle support and three patients were prescribed an AFO for ankle and knee support. Two types of AFO - a traditional polypropylene AFO (AFOPP) and a novel carbon-selective laser sintered polyamide AFO (AFOPA), were produced for each patient. AFO ankle stiffness was measured in a dedicated test rig. Gait analysis was performed under shod and orthotic conditions. RESULTS: Patient mass normalized AFOPP stiffness for ankle support ranged from 0.042 to 0.069 N·m·deg-1·kg-1, while for ankle and knee support it ranged from 0.081 to 0.127 N·m·deg-1·kg-1. On the group level, the ankle range of motion and mean ankle velocity in the push-off phase significantly decreased in both orthotic conditions, while peak ankle push-off power decreased non-significantly. Accordingly, on the group level, no significant improvements in walking speed were observed. However, after patient differentiation into good and bad responders it was found that in good responders peak ankle push-off power tended to be preserved and walking speed tended to increase. CONCLUSIONS: Quantification of AFO stiffness may help to understand why certain orthotic interventions are successful (unsuccessful) and ultimately lead to better AFO prescriptions. Implications for rehabilitation AFO ankle stiffness is key characteristic that determines how much support or restraint an AFO can provide. In a typical clinical setting, AFO ankle stiffness is not quantified. AFO has to meet individual patient's biomechanical needs. More objective AFO prescription and more controlled AFO production methods are needed to increase AFO success rate.


Assuntos
Pessoas com Deficiência/reabilitação , Desenho de Equipamento , Órtoses do Pé , Marcha/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prescrições , Adulto Jovem
15.
Polymers (Basel) ; 12(11)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153092

RESUMO

Fiber reinforced composite materials are typically comprised of two phases, i.e., the reinforcing fibers and a surrounding matrix. At a high volume fraction of reinforcing fibers, the matrix is confined to a microscale region in between the fibers (1-200 µm). Although these regions are interconnected, their behavior is likely dominated by their micro-scale. Nevertheless, the characterization of the matrix material (without reinforcing fibers) is usually performed on macroscopic bulk specimens and little is known about the micro-mechanical behavior of polymer matrix materials. Here, we show that the microscale behavior of an epoxy resin typically used in composite production is clearly different from its macroscale behavior. Microscale polymer specimens were produced by drawing microfibers from vitrifying epoxy resin. After curing, tensile tests were performed on a large set of pure epoxy microfiber specimens with diameters ranging from 30 to 400 µm. An extreme ductility was observed for microscale epoxy specimens, while bulk scale epoxy specimens showed brittle behavior. The microsized epoxy specimens had a plastic deformation behavior resulting in a substantially higher ultimate tensile strength (up to 380 MPa) and strain at break (up to 130 %) compared to their bulk counterpart (68 MPa and 8%). Polarized light microscopy confirmed a rearrangement of the internal epoxy network structure during loading, resulting in the plastic deformation of the microscale epoxy. This was further accompanied by in-situ electron microscopy to further determine the deformation behavior of the micro-specimens during tensile loading and make accurate strain measurements using video-extensometry. This work thus provides novel insights on the epoxy material behavior at the confined microscale as present in fiber reinforced composite materials.

16.
J Acoust Soc Am ; 147(4): 2647, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32359267

RESUMO

For centuries, wood, and more specifically spruce, has been the material of choice for violin top plates. Lately, carbon fiber instruments have entered the market. Some studies show that composite materials have potential advantages for making instruments [Damodaran, Lessard, and Babu, Acoust. Aust. 43, 117-122 (2015)]. However, no studies exist that evaluate violins made of different composite materials as judged by listeners. For this study, six prototype violins, differing only by the material of the top plate, were manufactured in a controlled laboratory setting. The six prototype violins were judged by experienced listeners in two double-blind experiments. In contrast to popular opinion that violins made from carbon have or lack a specific sound quality, the study provides insights in the diverse sounds and timbres violins from fiber-reinforced polymers can create. It allows an investigation of the links between the perception and the variations in material properties of the soundboards. Additionally, as neither players nor listeners are acquainted with these instruments, these results provide an interesting view on what type of qualities of violin-like sounds are preferred by listeners.


Assuntos
Música , Acústica , Atitude , Som , Madeira
17.
Ultrasonics ; 105: 106130, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32240870

RESUMO

Local Defect Resonance (LDR) is exploited for non-destructive testing (NDT) by using ultrasonic vibrations to get a localized resonant activation of defected zones. The LDR technique relies on the local stiffness difference between the defect and the sound material. Analyzing the structure's displacement field at this localized resonance frequency reveals the defect's location and provides information about the defect's characteristics, i.e. geometry, size and depth. In this study, the opportunities and limitations of linear LDR for NDT of materials are investigated in a parametric way. Both finite element simulations and experiments (using scanning laser Doppler vibrometry) are performed for aluminum alloy and carbon fiber reinforced polymer coupons with flat bottom holes and delaminations ranging in both depth and diameter. The resonance frequencies as well as the associated defect-to-background ratios are parametrically evaluated. For shallow defects, a clear LDR is observed caused by the strong local stiffness reduction at the defect. On the contrary, deep defects are associated with a limited stiffness decrease that results in the absence of LDR behavior. The local stiffness reduction at damages is further exploited using a weighted band power calculation. It is shown that using this technique, deep defects can be detected for which no LDR behavior was observed.

18.
Materials (Basel) ; 13(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093177

RESUMO

The purpose of this work is to find an effective image segmentation method for lab-based micro-tomography (µ-CT) data of carbon fiber reinforced polymers (CFRP) with insufficient contrast-to-noise ratio. The segmentation is the first step in creating a realistic geometry (based on µ-CT) for finite element modelling of textile composites on meso-scale. Noise in X-ray imaging data of carbon/polymer composites forms a challenge for this segmentation due to the very low X-ray contrast between fiber and polymer and unclear fiber gradients. To the best of our knowledge, segmentation of µ-CT images of carbon/polymer textile composites with low resolution data (voxel size close to the fiber diameter) remains poorly documented. In this paper, we propose and evaluate different approaches for solving the segmentation problem: variational on the one hand and deep-learning-based on the other. In the author's view, both strategies present a novel and reliable ground for the segmentation of µ-CT data of CFRP woven composites. The predictions of both approaches were evaluated against a manual segmentation of the volume, constituting our "ground truth", which provides quantitative data on the segmentation accuracy. The highest segmentation accuracy (about 4.7% in terms of voxel-wise Dice similarity) was achieved using the deep learning approach with U-Net neural network.

19.
IEEE Trans Ultrason Ferroelectr Freq Control ; 66(12): 1874-1886, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31369372

RESUMO

Numerical finite-element (FE) simulations and postprocessing analysis methods are presented for ultrasonic polar scan (UPS) measurements involving a circular phased array (C-PA) to determine the plane-wave reflection coefficient of plates. Apodization weights for the C-PA elements are determined to assure the generation of a quasi-plane wave upon excitation at the plate surface and to mitigate bounded beam effects on the assessed reflection coefficient. In addition, postprocessing of the reflection signals is performed via the synthetic plane-wave technique to further filter out any bounded beam effects. Reflection coefficients are presented for three cases namely, an aluminum, a unidirectional carbon epoxy, and a cross-ply carbon epoxy plate. For all three cases, comparison with the analytical plane-wave theory shows excellent agreement with the reflection coefficients obtained by the C-PA and the additional postprocessing steps for both the pulsed and harmonic signals. It is also shown that the agreement becomes considerably worse if the nonspecular reflection field is disregarded in the postprocessing treatment, thus enforcing the need to capture the full reflected field via the PA whenever plane-wave reflection coefficients are needed.

20.
Comput Methods Biomech Biomed Engin ; 22(8): 880-887, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30958030

RESUMO

The purpose of this study was to create and validate a standardized framework for the evaluation of the ankle stiffness of two designs of 3D printed ankle foot orthoses (AFOs). The creation of four finite element (FE) models allowed patient-specific quantification of the stiffness and stress distribution over their specific range of motion during the second rocker of the gait. Validation was performed by comparing the model outputs with the results obtained from a dedicated experimental setup, which showed an overall good agreement with a maximum relative error of 10.38% in plantarflexion and 10.66% in dorsiflexion. The combination of advanced computer modelling algorithms and 3D printing techniques clearly shows potential to further improve the manufacturing process of AFOs.


Assuntos
Tornozelo/fisiopatologia , Órtoses do Pé , Impressão Tridimensional , Adulto , Articulação do Tornozelo/fisiopatologia , Fenômenos Biomecânicos , Criança , Simulação por Computador , Elasticidade , Marcha , Humanos , Masculino , Dinâmica não Linear , Amplitude de Movimento Articular , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA