Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(2): 112109, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36807139

RESUMO

Topological stress can cause converging replication forks to stall during termination of vertebrate DNA synthesis. However, replication forks ultimately overcome fork stalling, suggesting that alternative mechanisms of termination exist. Using proteomics in Xenopus egg extracts, we show that the helicase RTEL1 and the replisome protein MCM10 are highly enriched on chromatin during fork convergence and are crucially important for fork convergence under conditions of topological stress. RTEL1 and MCM10 cooperate to promote fork convergence and do not impact topoisomerase activity but do promote fork progression through a replication barrier. Thus, RTEL1 and MCM10 play a general role in promoting progression of stalled forks, including when forks stall during termination. Our data reveal an alternate mechanism of termination involving RTEL1 and MCM10 that can be used to complete DNA synthesis under conditions of topological stress.


Assuntos
Cromatina , Replicação do DNA , Animais , DNA/metabolismo , Xenopus laevis
2.
EMBO J ; 41(12): e110632, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35578785

RESUMO

Topoisomerase II (TOP2) unlinks chromosomes during vertebrate DNA replication. TOP2 "poisons" are widely used chemotherapeutics that stabilize TOP2 complexes on DNA, leading to cytotoxic DNA breaks. However, it is unclear how these drugs affect DNA replication, which is a major target of TOP2 poisons. Using Xenopus egg extracts, we show that the TOP2 poisons etoposide and doxorubicin both inhibit DNA replication through different mechanisms. Etoposide induces TOP2-dependent DNA breaks and TOP2-dependent fork stalling by trapping TOP2 behind replication forks. In contrast, doxorubicin does not lead to appreciable break formation and instead intercalates into parental DNA to stall replication forks independently of TOP2. In human cells, etoposide stalls forks in a TOP2-dependent manner, while doxorubicin stalls forks independently of TOP2. However, both drugs exhibit TOP2-dependent cytotoxicity. Thus, etoposide and doxorubicin inhibit DNA replication through distinct mechanisms despite shared genetic requirements for cytotoxicity.


Assuntos
DNA Topoisomerases Tipo II , Venenos , Animais , DNA , Replicação do DNA , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Doxorrubicina/farmacologia , Etoposídeo/farmacologia , Humanos , Vertebrados/genética , Vertebrados/metabolismo
3.
Eur J Med Chem ; 186: 111885, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31784187

RESUMO

Constitutive activation of STAT3 can play a vital role in the development of melanoma. STAT3-targeted therapeutics are reported to show efficacy in melanomas harboring the BRAFV600E mutant and also in vemurafenib-resistant melanomas. We designed and synthesized a series of substituted nitric oxide (NO)-releasing quinolone-1,2,4-triazole/oxime hybrids, hypothesizing that the introduction of a STAT3 binding scaffold would augment their cytotoxicity. All the hybrids tested showed a comparable level of in vitro NO production. 7b and 7c exhibited direct binding to the STAT3-SH domain with IC50 of ∼ 0.5 µM. Also, they abrogated STAT3 tyrosine phosphorylation in several cancer cell lines, including the A375 melanoma cell line that carries the BRAFV600E mutation. At the same time, they did not affect the phosphorylation of upstream kinases or other STAT isoforms. 7c inhibited STAT3 nuclear translocation in mouse embryonic fibroblast while 7b and 7c inhibited STAT3 DNA-binding activity in the A375 cell line. Their anti-proliferating activity is attributed to their ability to trigger the production of reactive oxygen species and induce G1 cell cycle arrest in the A375 cell line. Interestingly, 7b and 7c showed robust cell growth suppression and apoptosis induction in two pairs of BRAF inhibitor-naïve (-S) and resistant (-R) melanoma cell lines containing a BRAF V600E mutation. Surprisingly, MEL1617-R cells that are known to be more resistance to MEK inhibition by GSK1120212 than MEL1617-S cells exhibit a similar response to 7b and 7c.


Assuntos
Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Melanoma/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Óxido Nítrico/análise , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade
4.
Nat Commun ; 10(1): 5232, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745079

RESUMO

Recently, the targeting of ERK with ATP-competitive inhibitors has emerged as a potential clinical strategy to overcome acquired resistance to BRAF and MEK inhibitor combination therapies. In this study, we investigate an alternative strategy of targeting the D-recruitment site (DRS) of ERK. The DRS is a conserved region that lies distal to the active site and mediates ERK-protein interactions. We demonstrate that the small molecule BI-78D3 binds to the DRS of ERK2 and forms a covalent adduct with a conserved cysteine residue (C159) within the pocket and disrupts signaling in vivo. BI-78D3 does not covalently modify p38MAPK, JNK or ERK5. BI-78D3 promotes apoptosis in BRAF inhibitor-naive and resistant melanoma cells containing a BRAF V600E mutation. These studies provide the basis for designing modulators of protein-protein interactions involving ERK, with the potential to impact ERK signaling dynamics and to induce cell cycle arrest and apoptosis in ERK-dependent cancers.


Assuntos
Dioxanos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/tratamento farmacológico , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Tiazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Cisteína/genética , Cisteína/metabolismo , Dioxanos/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Melanoma/genética , Melanoma/metabolismo , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Tiazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA