Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 645: 123423, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37722494

RESUMO

The aim of this study is to increase process understanding of the granulation mechanism in twin-screw melt granulation by evaluating the influence of different screw configurations on granule formation and granule temperature via thermal imaging. The study used a Design of Experiments (DoE) to process a miscible and immiscible formulation (85% API/binder w/w) using a twin-screw extruder with varying screw configurations. The barrel temperature (°C), screw speed (rpm), throughput (kg/h), and kneading zone (direction and stagger angle) were varied. Granule and process properties were evaluated for samples collected at four different locations along the length of the granulation barrel to visualize the granule formation, and granule temperature was monitored by an infrared camera to measure heat transfer on the granules. The resulting temperature was linked to the granule properties and the granule formation along the length of the barrel. The most influencing factors on the granule temperature are the direction of the kneading zone and the set barrel temperature. It was observed that granule formation mainly occurred in the zones that apply more kneading on the granules. The highest temperature increase was observed when the smallest stagger angle in reverse configuration was used, and could be linked to better granule quality attributes.

2.
Int J Pharm ; 639: 122986, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37116599

RESUMO

In the pharmaceutical industry, innovative continuous manufacturing technologies such as twin-screw melt granulation (TSMG) are gaining more and more interest to process challenging formulations. To enable the implementation of TSMG, more elucidation of the process is required and this study provides a better understanding of the granule formation along the length of the barrel. By sampling at four different zones, the influence of screw configuration, process parameters and formulation is investigated for the granule properties next to the residence time distribution. It showed that conveying elements initiate the granulation by providing a limited heat transfer into the powder bed. In the kneading zones, the consolidation stage takes place, shear elongation combined with breakage and layering is occurring for the reversed configurations and densification with breakage and layering for the forward and neutral configurations. Due to the material build-up in the reversed configurations, these granules are larger, stronger, more elongated and less porous due to the higher degree of shear and densification. This configuration also shows a significantly longer residence time compared to the forward configuration. Hence, the higher level of shear and the longer period of time enables more melting of the binder resulting in successful granulation.


Assuntos
Indústria Farmacêutica , Tecnologia Farmacêutica , Tamanho da Partícula , Tecnologia Farmacêutica/métodos , Excipientes , Pós , Composição de Medicamentos/métodos
3.
Int J Pharm ; 630: 122322, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36448825

RESUMO

Twin-screw melt granulation (TSMG) is a promising continuous manufacturing technology for the processing of high drug load formulations and to formulate heat- and moisture-sensitive active pharmaceutical ingredients (APIs). This study evaluates the influence of process parameters for TSMG, mainly focusing on the effect of the screw configuration combined with screw speed, throughput and barrel temperature, to elucidate the melt granulation mechanisms. For the kneading zone, the stagger angle was varied between 30°, 60° and 90°, and investigated for both the forward and the reversed direction. In addition to the process parameters, the influence of the formulation differing in their API-binder miscibility was evaluated. As responses, the granule (size, friability and porosity) and process properties such as torque were evaluated, indicating that the screw configuration is the most influential factor. Nucleation, consolidation and breakage are the granulation mechanisms for the forward and the neutral configuration, while consolidation and densification with shear elongation are identified for the reversed configuration. The formulations differ mainly in the forward and neutral configuration since the immiscible formulation shows a bimodal granule size distribution with a larger fraction of fines and weaker granules is obtained. For the reversed configuration, similar granulation mechanisms are seen for both formulations.


Assuntos
Excipientes , Tecnologia Farmacêutica , Tamanho da Partícula , Porosidade , Temperatura , Composição de Medicamentos , Comprimidos
4.
Int J Pharm ; 586: 119591, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32640268

RESUMO

The main objective of this work was to explore the potential of coupling hot-melt extrusion (HME) to Fused Filament Fabrication (FFF), also known as Extrusion-Based Additive Manufacturing (EBAM) or 3D Printing, in order to manufacture 3D printed tablets with different release behavior from plasticizer-free filament matrices. The suitability of different thermoplastic polymers towards FFF was investigated, and a link between the mechanical properties of filaments produced by HME and the feeding performance into the FFF printer was established. Model drugs with different aqueous solubility (metoprolol tartrate and theophylline anhydrous) were processed with hydrophilic and hydrophobic polymers, and the influence of the formulation, drug concentration and applied process settings on the release kinetics was investigated. Filaments with up to 40% drug load were successfully extruded with a smooth surface and a diameter of 1.75 ± 0.05 mm. However, filaments with high brittleness and low toughness were broken by the feeding gears. In contrast, none of the filaments were squeezed aside by the gears, which indicated that they were sufficiently stiff as indicated by the high Young's moduli of all formulations. For all formulations, the release from the tablets with 50% infill degree was faster as compared to the tablets with 100% infill degree. Theophylline (20% w/w) release from Kollicoat® IR matrix was completed within 40 min from 50% infill tablets. In contrast, 80% metoprolol tartrate was released from the hydrophobic Capa® 6506 polymer within 24hrs from 50% infill 3D tablets containing 40% w/w MPT.


Assuntos
Polímeros , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Humanos , Impressão Tridimensional , Solubilidade , Comprimidos
5.
Eur J Pharm Sci ; 132: 106-117, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30831193

RESUMO

Recently, an innovative continuous manufacturing technology for a pharmaceutical oral suspension was proposed, based on two consecutive mixing units. A limitation of this technology is the need to dissolve or disperse powder-based raw materials in a liquid via a batch step before continuous manufacturing. Therefore, the aim of the current study was to develop and investigate a method to introduce powders continuously into the existing equipment via the implementation of two upstream continuous unit operations: a powder feeder and powder dispersing unit. A pharmaceutical cream was selected as model formulation to demonstrate the flexibility of the continuous manufacturing technology towards different types of semi-solid and liquid formulations. The ability to continuously feed and disperse active pharmaceutical ingredient (API) using the proposed method was assessed via an experimental design, in which the impact of several process parameters of the powder dispersing unit on the API concentration (relative error (RE) and relative standard deviation (RSD)) was examined. A Raman spectroscopic method was developed to quantify the API concentration in-line after the powder dispersing step. The API concentration was independent of the process parameters and fell within the acceptance limits, except for two experimental runs where a deviating API concentration was observed. These results demonstrate that the continuous powder feeding and dispersing method was suitable, and that a completely continuous manufacturing system was obtained. To achieve raw material traceability and understanding the mixing behavior, the residence time distribution (RTD) of a tracer inside the continuous manufacturing equipment was determined using a colorimetric technique. The time required to remove all tracer from the powder dispersing unit operation was very long (1481 s) and therefore the volume inside this unit operation should be reduced by designing new equipment with smaller dimensions. At the two consecutive mixing units, the peak and mean residence time were influenced by throughput, whereas mixing speed in both mixing units had a significant impact on the degree of axial mixing. Finally, the continuously manufactured cream had a similar rheological behavior as the original batch-wise manufactured cream.


Assuntos
Excipientes/química , Pomadas/química , Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Química Farmacêutica , Composição de Medicamentos , Pós , Reologia , Análise Espectral Raman , Tecnologia Farmacêutica/instrumentação
6.
Eur J Pharm Sci ; 123: 576-583, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30102980

RESUMO

The aim of this study was to investigate the applicability of an innovative continuous manufacturing system for semi-solid and liquid pharmaceutical formulations. A commercially available pharmaceutical oral suspension was selected as model formulation. Premixes of the raw materials were dosed via peristaltic pumps to the mixing compartment, which consists of two consecutive mixing units. An experimental design was used to study the influence of several process parameters (throughput, mixing speed in mixing unit 1 and mixing speed in mixing unit 2) on the quality attributes of the oral suspension. The pH, density, active pharmaceutical ingredient (API) concentration, sedimentation after 30 days (expressed by the sedimentation volume) and rheological characteristic (yield stress) of the suspension were determined. No significant influence of the process parameters on the pH, density and API concentration was observed. The throughput and mixing speed in mixing unit 1 had a significant impact on both the sedimentation volume and yield stress, and were therefore critical to acquire physical stable suspensions. Furthermore, the yield stress measured one day after production was predictive for the occurrence of sedimentation in the suspensions after 30 days. When selecting the optimal process settings, the continuously manufactured suspension had a similar product quality as the original batch-processed suspension and even possessed a higher yield stress. This study demonstrated that the investigated innovative continuous manufacturing technology is suitable for the manufacturing of a commercially available pharmaceutical suspension and that the product quality can be optimized by adjusting the process parameters.


Assuntos
Química Farmacêutica/métodos , Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Administração Oral , Química Farmacêutica/normas , Composição de Medicamentos , Excipientes/química , Concentração de Íons de Hidrogênio , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/normas , Soluções Farmacêuticas , Controle de Qualidade , Reologia , Solubilidade , Tecnologia Farmacêutica/normas , Fatores de Tempo
7.
Int J Pharm ; 529(1-2): 218-226, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28663088

RESUMO

The aim of the present study was to develop thermoplastic polyurethane (TPU)-based intravaginal rings (IVRs) for prophylaxis and treatment of bacterial vaginosis via hot melt extrusion/injection molding. Therefore, different TPU grades were processed in combination with lactic acid or metronidazole, targeting a sustained lactic acid release over a 28day-period and sustained metronidazole release over 4-7days. Hot melt extrusion of lactic acid/TPU combinations required a lower extrusion temperature due to the plasticizing properties of lactic acid, evidenced by the lower glass transition temperature (Tg) and cross-over point (Ttanδ=1) values. NIR-chemical imaging data showed a homogenous distribution of lactic acid in TPU matrices at drug loads up to 30% (w/w). The addition of metronidazole did not lower processing temperatures, as the active pharmaceutical ingredient remained crystalline in the TPU matrix. Hydrophobic TPUs with a low ratio between the soft and hard segments (SS/HS ratio) in the polymer structure were suitable carriers for the lactic acid-eluting device over a 28-day period, while hydrophilic TPUs were needed to achieve the required release rate of metronidazole-eluting IVRs. IVRs manufactured with a TPU grade having a higher SS/HS ratio and lactic acid/TPU ratio exhibited a more elastic behavior. The addition of 25% (w/w) metronidazole did not affect the mechanical properties of the IVRs. Hydrophilic TPUs were most prone to biofilm formation by Candida albicans and Staphylococcus aureus, but the incorporation of metronidazole in the device prevented biofilm formation. Based on the drug eluting performance and mechanical tests, a mixture of lactic acid and Tecoflex™ EG-93A (20/80, w/w) and a combination of metronidazole and Tecophilic™ SP-93A-100 (25/75, w/w) were selected to design IVRs for the prophylaxis and treatment of bacterial vaginosis, respectively. Slug mucosal irritation tests predicted low irritation potency for both devices.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Láctico/química , Metronidazol/farmacologia , Poliuretanos/química , Vaginose Bacteriana/tratamento farmacológico , Administração Intravaginal , Liberação Controlada de Fármacos , Feminino , Humanos
8.
Int J Pharm ; 528(1-2): 383-394, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28614694

RESUMO

The presence of solid matter in polymer melts affects the rheological properties of a drug-polymer mixture, and thus the processability of these mixtures in melt-based processes. The particle morphological changes related to dissolution and crystal growth in the mixtures of paracetamol and ibuprofen with polyethylene oxide and methacrylate copolymer (Eudragit® E PO) were observed by polarized microscopy simultaneously while measuring their rheological properties within temperature ranges relevant for melt processes, such as hot melt extrusion and fused deposition modeling 3D printing. The dissolution of solid crystalline matter into the molten polymer and its effects on the rheological parameters showed that the plasticization effect of the drug was highly dependent on the temperature range, and at a temperature high enough, plasticization induced by the small-molecule drugs could enhance the flowability even at very high drug loads. Therefore, even supersaturated mixtures can be plasticized efficiently, enabling their melt processing, such as hot melt extrusion or 3D printing. The combination of rheometry and polarized light microscopy proved to be very useful for studying the link between morphological changes in the drug-polymer and the flow behavior of the drug-polymer mixtures at different temperature ranges and deformation modes.


Assuntos
Acetaminofen/química , Composição de Medicamentos , Ibuprofeno/química , Polímeros/química , Reologia , Temperatura Alta , Microscopia , Polietilenoglicóis , Solubilidade , Tecnologia Farmacêutica
9.
Int J Pharm ; 517(1-2): 348-358, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27988376

RESUMO

As the number of applications for polymers in pharmaceutical development is increasing, there is need for fundamental understanding on how such compounds behave during tableting. This research is focussed on the tableting behaviour of amorphous polymers, their solid dispersions and the impact of hot-melt extrusion on the compaction properties of these materials. Soluplus, Kollidon VA 64 and Eudragit EPO were selected as amorphous polymers since these are widely studied carriers for solid dispersions, while Celecoxib was chosen as BCS class II model drug. Neat polymers and physical mixtures (up to 35% drug load) were processed by hot-melt extrusion (HME), milled and sieved to obtain powders with comparable particle sizes as the neat polymer. A novel approach was used for in-line analysis of the compaction properties on a rotary tablet press (Modul P, GEA) using complementary sensors and software (CDAAS, GEA). By combining 'in-die' and 'out-of-die' techniques, it was possible to investigate in a comprehensive way the impact of HME on the tableting behaviour of amorphous polymers and their formulations. The formation of stable glassy solutions altered the formulations towards more fragmentary behaviour under compression which was beneficial for the tabletability. Principal component analysis (PCA) was applied to summarize the behaviour during compaction of the formulations, enabling the selection of Soluplus and Kollidon VA 64 as the most favourable polymers for compaction of glassy solutions.


Assuntos
Celecoxib/química , Polietilenoglicóis/química , Polímeros/química , Ácidos Polimetacrílicos/química , Polivinil/química , Pirrolidinas/química , Comprimidos/química , Compostos de Vinila/química , Composição de Medicamentos/métodos , Temperatura Alta , Tamanho da Partícula , Pós/química , Pressão , Reologia , Tecnologia Farmacêutica/estatística & dados numéricos
10.
Int J Pharm ; 506(1-2): 214-21, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27113866

RESUMO

Hydrophilic aliphatic thermoplastic polyurethane (Tecophilic™ grades) matrices for high drug loaded oral sustained release dosage forms were formulated via hot melt extrusion/injection molding (HME/IM). Drugs with different aqueous solubility (diprophylline, theophylline and acetaminophen) were processed and their influence on the release kinetics was investigated. Moreover, the effect of Tecophilic™ grade, HME/IM process temperature, extrusion speed, drug load, injection pressure and post-injection pressure on in vitro release kinetics was evaluated for all model drugs. (1)H NMR spectroscopy indicated that all grades have different soft segment/hard segment ratios, allowing different water uptake capacities and thus different release kinetics. Processing temperature of the different Tecophilic™ grades was successfully predicted by using SEC and rheology. Tecophilic™ grades SP60D60, SP93A100 and TG2000 had a lower processing temperature than other grades and were further evaluated for the production of IM tablets. During HME/IM drug loads up to 70% (w/w) were achieved. In addition, Raman mapping and (M)DSC results confirmed the homogenous distribution of mainly crystalline API in all polymer matrices. Besides, hydrophilic TPU based formulations allowed complete and sustained release kinetics without using release modifiers. As release kinetics were mainly affected by drug load and the length of the PEO soft segment, this polymer platform offers a versatile formulation strategy to adjust the release rate of drugs with different aqueous solubility.


Assuntos
Acetaminofen/administração & dosagem , Difilina/administração & dosagem , Poliuretanos/química , Teofilina/administração & dosagem , Acetaminofen/química , Administração Oral , Química Farmacêutica/métodos , Cristalização , Preparações de Ação Retardada , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Difilina/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Solubilidade , Comprimidos , Tecnologia Farmacêutica/métodos , Teofilina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA