Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(18): 12281-12290, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34495667

RESUMO

Bioretention cells can effectively infiltrate stormwater runoff and partly remove conventional water contaminants. A field tracer injection experiment in a conventionally designed bioretention cell was used to investigate the fate of benzotriazole, a model trace organic contaminant, during and between runoff events. Moderate (29%) benzotriazole load reductions were measured during the 6 h long injection experiment. The detection of 1-methyl benzotriazole, hydroxy benzotriazole, and methoxy benzotriazole provided in situ evidence of some rapid benzotriazole microbial transformation during the tracer test and more importantly between the events. The detection of benzotriazole alanine and benzotriazole acetyl alanine also showed fast benzotriazole phytotransformation to amino acid conjugates during the tracer test and suggests further transformation of phytotransformation products between events. These data provide conclusive full-scale evidence of benzotriazole microbial and phytotransformation in bioretention cells. Non-target chemical analysis revealed the presence of a diverse range of trace organic contaminants in urban runoff and exiting the bioretention cell, including pesticides and industrial, household, and pharmaceutical compounds. We have demonstrated the in situ potential of urban green infrastructure such as bioretention cells to eliminate polar trace organic contaminants from stormwater. However, targeted design and operation strategies, for example, hydraulic control and the use of soil amendments, should be incorporated for improved bioretention cell performance for such compounds.


Assuntos
Chuva , Solo , Triazóis
2.
Water Res ; 191: 116785, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401167

RESUMO

Microplastic pathways in the environment must be better understood to help select appropriate mitigation strategies. In this 2-year long field study, microplastics were characterized and quantified in urban stormwater runoff and through a bioretention cell, a type of low impact development infrastructure. Concentrations of microparticles ranged from below the detection limit to 704 microparticles/L and the dominant morphology found were fibers. High rainfall intensity and longer antecedent dry days resulted in larger microparticle concentrations. In addition, atmospheric deposition was a source of microplastics to urban runoff. Overall, these results demonstrate that urban stormwater runoff is a concentrated source of microplastics whose concentrations depend on specific climate variables. The bioretention cell showed an 84% decrease in median microparticle concentration in the 106-5,000 µm range, and thus is effective in filtering out microplastics and preventing their spread to downstream environments. Altogether, these results highlight the large contribution of urban stormwater runoff to microplastic contamination in larger aquatic systems and demonstrate the potential for current infiltration-based low impact development practices to limit the spread of microplastic contamination downstream.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Chuva , Movimentos da Água , Poluentes Químicos da Água/análise
3.
J Environ Manage ; 139: 69-79, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24681366

RESUMO

This study examined the spring, summer and fall water quality performance of three partial-infiltration permeable pavement (PP) systems and a conventional asphalt pavement in Ontario. The study, conducted between 2010 and 2012, compared the water quality of effluent from two Interlocking Permeable Concrete Pavements (AquaPave(®) and Eco-Optiloc(®)) and a Hydromedia(®) Pervious Concrete pavement with runoff from an Asphalt control pavement. The usage of permeable pavements can mitigate the impact of urbanization on receiving surface water systems through quantity control and stormwater treatment. The PP systems provided excellent stormwater treatment for petroleum hydrocarbons, total suspended solids, metals (copper, iron, manganese and zinc) and nutrients (total-nitrogen and total-phosphorus) by reducing event mean concentrations (EMC) as well as total pollutant loadings. The PPs significantly reduced the concentration and loading of ammonia (NH4(+)+NH3), nitrite (NO2(-)) and organic-nitrogen (Org-N) but increased the concentration and loading of nitrate (NO3(-)). The PP systems had mixed performances for the treatment of phosphate (PO4(3-)). The PP systems increased the concentration of sodium (Na) and chloride (Cl) but EMCs remained well below recommended levels for drinking water quality. Relative to the observed runoff, winter road salt was released more slowly from the PP systems resulting in elevated spring and early-summer Cl and Na concentrations in effluent. PP materials were found to introduce dissolved solids into the infiltrating stormwater. The release of these pollutants was verified by additional laboratory scale testing of the individual pavement and aggregate materials at the University of Guelph. Pollutant concentrations were greatest during the first few months after construction and declined rapidly over the course of the study.


Assuntos
Materiais de Construção , Poluentes Químicos da Água/análise , Amônia/análise , Monitoramento Ambiental , Hidrocarbonetos/análise , Metais Pesados/análise , Nitratos/análise , Nitritos/análise , Nitrogênio/análise , Ontário , Permeabilidade , Petróleo , Fósforo/análise , Chuva , Estações do Ano , Movimentos da Água , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...