Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(5): e62374, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23650513

RESUMO

Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001) between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1). For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1) (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified.


Assuntos
Ácaros e Carrapatos/efeitos dos fármacos , Anfípodes/efeitos dos fármacos , Dípteros/efeitos dos fármacos , Imidazóis/toxicidade , Inseticidas/toxicidade , Nitrocompostos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomassa , Neonicotinoides , Países Baixos , Poluição Química da Água
2.
Oecologia ; 146(2): 190-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16133192

RESUMO

We compared the potential for compensatory growth of two grass species from the Mongolian steppe that differ in their ability to persist under grazing: the rhizomatous Leymus chinensis and the caespitose Stipa krylovii, and investigated how this ability might be affected by drought. Plants were grown in a greenhouse under wet and dry conditions and subjected to a clipping treatment (biweekly removal of 75-90% of the aerial mass). Leymus exhibited a much stronger compensatory growth after clipping than Stipa. Leymus showed a significant increase in its relative growth rate (RGR) after clipping, while for Stipa RGR was negatively affected. Clipped Leymus plants maintained leaf productivity levels that were similar to undamaged individuals, while leaf-productivity in clipped Stipa dropped to less than half of that of the controls. In Leymus, there was less compensatory growth under dry than under wet conditions, while in Stipa the compensation was increased under drought. This difference probably reflects the fact that Stipa is more drought-tolerant than Leymus. The greater compensatory growth of Leymus compared to Stipa mainly resulted from a greater stimulation of its net assimilation rate (NAR), and its greater capacity to store and reallocate carbohydrates by clipping. The greater increase in NAR was probably the result of a stronger reduction in self-shading, because Leymus shoots were much denser than those of Stipa, which resulted in a higher increase in light penetration to remaining leaves after clipping. The results of this study suggest that the greater ability of Leymus to persist under grazing is the result of its larger capacity for compensatory growth.


Assuntos
Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Água/farmacologia , Biomassa , Ambiente Controlado , Especificidade da Espécie , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...