Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 8(10): 1768-1776, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37770743

RESUMO

Ethical practices in human microbiome research have failed to keep pace with scientific advances in the field. Researchers seeking to 'preserve' microbial species associated with Indigenous groups, but absent from industrialized populations, have largely failed to include Indigenous people in knowledge co-production or benefit, perpetuating a legacy of intellectual and material extraction. We propose a framework centred on relationality among Indigenous peoples, researchers and microbes, to guide ethical microbiome research. Our framework centres accountability to flatten historical power imbalances that favour researcher perspectives and interests to provide space for Indigenous worldviews in pursuit of Indigenous research sovereignty. Ethical inclusion of Indigenous communities in microbiome research can provide health benefits for all populations and reinforce mutually beneficial partnerships between researchers and the public.


Assuntos
Microbiota , Grupos Populacionais , Humanos
2.
ACS Infect Dis ; 7(8): 2285-2298, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34259502

RESUMO

The Gram-negative anaerobe Fusobacterium nucleatum is an opportunistic human pathogen, most frequently associated with periodontal disease through dental biofilm formation and, increasingly, with colorectal cancer development and progression. F. nucleatum infections are routinely treated by broad-spectrum ß-lactam antibiotics and metronidazole. However, these antibiotics can negatively impact the normal microflora. Therefore, the development of novel narrow-spectrum antimicrobials active against anaerobic pathogens is of great interest. Here, we examined the antimicrobial Zn ionophore PBT2, an 8-hydroxyquinoline analogue with metal chelating properties, against a single type isolate F. nucleatum ATCC 25586. PBT2-Zn was a potent inhibitor of growth and exhibited synergistic bactericidal (>3-log10 killing) activity at 5× MIC in planktonic cells, and at the MIC in biofilms grown in vitro. Physiological and transcriptional analyses uncovered a strong cellular response relating to Zn and Fe homeostasis in PBT2-Zn treated cells across subinhibitory and inhibitory concentrations. At 1× MIC, PBT2 alone induced a 3.75-fold increase in intracellular Zn, whereas PBT2-Zn challenge induced a 19-fold accumulation of intracellular Zn after 2 h. A corresponding 2.1-fold loss of Fe was observed at 1× MIC. Transcriptional analyses after subinhibitory PBT2-Zn challenge (0.125 µg/mL and 200 µM ZnSO4) revealed significant differential expression of 15 genes at 0.5 h, and 12 genes at 1 h. Upregulated genes included those with roles in Zn homeostasis (e.g., a Zn-transporting ATPase and the Zn-sensing transcriptional regulator, smtB) and hemin transport (hmuTUV) to re-establish Fe homeostasis. A concentration-dependent protective effect was observed for cells pretreated with hemin (50 µg/mL) prior to PBT2-Zn challenge. The data presented here supports our proposal that targeting the disruption of metallostasis by Zn-translocating ionophores is a strategy worth investigating further for the treatment of Gram-negative anaerobic pathogens.


Assuntos
Fusobacterium nucleatum , Zinco , Anaerobiose , Biofilmes , Humanos , Ionóforos
3.
Bioorg Med Chem ; 29: 115837, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223463

RESUMO

A series of C-2 derivatized 8-sulfonamidoquinolines were evaluated for their antibacterial activity against the common mastitis causative pathogens Streptococcus uberis, Staphylococcus aureus and Escherichia coli, both in the presence and absence of supplementary zinc (50 µM ZnSO4). The vast majority of compounds tested were demonstrated to be significantly more active against S. uberis when in the presence of supplementary zinc (MICs as low as 0.125 µg/mL were observed in the presence of 50 µM ZnSO4). Compounds 5, 34-36, 39, 58, 79, 82, 94 and 95 were shown to display the greatest antibacterial activity against S. aureus (MIC ≤ 8 µg/mL; both in the presence and absence of supplementary zinc), while compounds 56, 58 and 66 were demonstrated to also exhibit activity against E. coli (MIC ≤ 16 µg/mL; under all conditions). Compounds 56, 58 and 66 were subsequently confirmed to be bactericidal against all three mastitis pathogens studied, with MBCs (≥3log10 CFU/mL reduction) of ≤ 32 µg/mL (in both the presence and absence of 50 µM ZnSO4). To validate the sanitizing activity of compounds 56, 58 and 66, a quantitative suspension disinfection (sanitizer) test was performed. Sanitizing activity (>5log10 CFU/mL reduction in 5 min) was observed against both S. uberis and E. coli at compound concentrations as low as 1 mg/mL (compounds 56, 58 and 66), and against S. aureus at 1 mg/mL (compound 58); thereby validating the potential of compounds 56, 58 and 66 to function as topical sanitizers designed explicitly for use in non-human applications.


Assuntos
Amidas/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Quinolinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Amidas/síntese química , Amidas/química , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
4.
Bioorg Med Chem Lett ; 30(11): 127110, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32229060

RESUMO

A series of substituted sulfonamide bioisosteres of 8-hydroxyquinoline were evaluated for their antibacterial activity against the common mastitis causative pathogens Streptococcus uberis, Staphylococcus aureus and Escherichia coli, both in the presence and absence of supplementary zinc. Compounds 9a-e, 10a-c, 11a-e, 12 and 13 were demonstrated to have MICs of 0.0625 µg/mL against S. uberis in the presence of 50 µM ZnSO4. Against S. aureus compounds 9g (MIC 4 µg/mL) and 11d (MIC 8 µg/mL) showed the greatest activity, whereas all compounds were found to be inactive against E. coli (MIC > 256 µg/mL); again in the presence of 50 µM ZnSO4. All compounds were demonstrated to be significantly less active in the absence of supplementary zinc. Compound 9g was subsequently confirmed to be bactericidal, with an MBC (≥3log10 cfu/mL reduction) of 0.125 µg/mL against S. uberis in the presence of 50 µM ZnSO4. To validate the sanitising activity of compound 9g in the presence of supplementary zinc, a quantitative suspension disinfection (sanitizer) test was performed. In this preliminary test, sanitizing activity (>5log10 reduction of CFU/mL in 5 min) was observed against S. uberis for compound 9g at concentrations as low as 1 mg/mL, validating the potential of this compound to function as a topical sanitizer against the major environmental mastitis-causing microorganism S. uberis.


Assuntos
Antibacterianos/química , Oxiquinolina/química , Sulfanilamida/química , Zinco/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Oxiquinolina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Relação Estrutura-Atividade
5.
Front Microbiol ; 10: 1995, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555233

RESUMO

In this study we investigated the influence of oxygen availability on a phenotypic microtiter screen to identify new, natural product inhibitors of growth for the bovine mastitis-causing microorganisms; Streptococcus uberis, Staphylococcus aureus, and Escherichia coli. Mastitis is a common disease in dairy cattle worldwide and is a major cause of reduced milk yield and antibiotic usage in dairy herds. Prevention of bovine mastitis commonly relies on the application of teat disinfectants that contain either iodine or chlorhexidine. These compounds are used extensively in human clinical settings and increased tolerance to chlorhexidine has been reported in both Gram-positive and Gram-negative microorganisms. As such new, non-human use alternatives are required for the agricultural industry. Our screening was conducted under normoxic (20% oxygen) and hypoxic (<1% oxygen) conditions to mimic the conditions on teat skin and within the mammary gland respectively, against two natural compound libraries. No compounds inhibited E. coli under either oxygen condition. Against the Gram-positive microorganisms, 12 inhibitory compounds were identified under normoxic conditions, and 10 under hypoxic conditions. Data revealed a clear oxygen-dependency amongst compounds inhibiting growth, with only partial overlap between oxygen conditions. The oxygen-dependent inhibitory activity of a naturally occurring quinone, ß-lapachone, against S. uberis was subsequently investigated and we demonstrated that this compound is only active under normoxic conditions with a minimum inhibitory concentration and minimum bactericidal concentration of 32 µM and kills via a reactive oxygen species-dependent mechanism as has been demonstrated in other microorganisms. These results demonstrate the importance of considering oxygen-availability in high-throughput inhibitor discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...