Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(4): 4991-4998, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235733

RESUMO

Using Hubbard-U-corrected density functional theory calculations, lattice Monte Carlo simulations, and spin Monte Carlo simulations, we investigate the impact of dopant clustering on the magnetic properties of WSe2 doped with period four transition metals. We use manganese (Mn) and iron (Fe) as candidate n-type dopants and vanadium (V) as the candidate p-type dopant, substituting the tungsten (W) atom in WSe2. Specifically, we determine the strength of the exchange interaction in Fe-, Mn-, and V-doped WSe2 in the presence of clustering. We show that the clusters of dopants are energetically more stable than discretely doped systems. Further, we show that in the presence of dopant clustering, the magnetic exchange interaction significantly reduces because the magnetic order in clustered WSe2 becomes more itinerant. Finally, we show that the clustering of the dopant atoms has a detrimental effect on the magnetic interaction, and to obtain an optimal Curie temperature, it is important to control the distribution of the dopant atoms.

2.
Nanoscale ; 14(1): 157-165, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34904618

RESUMO

Using first-principles calculations, we investigate six transition-metal nitride halides (TMNHs): HfNBr, HfNCl, TiNBr, TiNCl, ZrNBr, and ZrNCl as potential van der Waals (vdW) dielectrics for transition metal dichalcogenide (TMD) channel transistors. We calculate the exfoliation energies and bulk phonon energies and find that the six TMNHs are exfoliable and thermodynamically stable. We calculate both the optical and static dielectric constants in the in-plane and out-of-plane directions for both monolayer and bulk TMNHs. In monolayers, the out-of-plane static dielectric constant ranges from 5.04 (ZrNCl) to 6.03 (ZrNBr) whereas in-plane dielectric constants range from 13.18 (HfNBr) to 74.52 (TiNCl). We show that the bandgap of TMNHs ranges from 1.53 eV (TiNBr) to 3.36 eV (HfNCl) whereas the affinity ranges from 4.01 eV (HfNBr) to 5.60 eV (TiNCl). Finally, we estimate the dielectric leakage current density of transistors with six TMNH bilayer dielectrics with five monolayer channel TMDs (MoS2, MoSe2, MoTe2, WS2, and WSe2). For p-MOS TMD channel transistors 25 out of 30 combinations have a smaller leakage current than hexagonal boron nitride (hBN), a well-known vdW dielectric. The smallest bilayer leakage current of 1.15 × 10-2 A cm-2 is predicted for a p-MOS MoSe2 transistor with HfNCl as a gate dielectric. HfNBr, ZrNBr, and ZrNCl are also predicted to yield small leakage currents in certain p-MOS TMD transistors.

3.
Nat Commun ; 12(1): 5051, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413289

RESUMO

To realize effective van der Waals (vdW) transistors, vdW dielectrics are needed in addition to vdW channel materials. We study the dielectric properties of 32 exfoliable vdW materials using first principles methods. We calculate the static and optical dielectric constants and discover a large out-of-plane permittivity in GeClF, PbClF, LaOBr, and LaOCl, while the in-plane permittivity is high in BiOCl, PbClF, and TlF. To assess their potential as gate dielectrics, we calculate the band gap and electron affinity, and estimate the leakage current through the candidate dielectrics. We discover six monolayer dielectrics that promise to outperform bulk HfO2: HoOI, LaOBr, LaOCl, LaOI, SrI2, and YOBr with low leakage current and low equivalent oxide thickness. Of these, LaOBr and LaOCl are the most promising and our findings motivate the growth and exfoliation of rare-earth oxyhalides for their use as vdW dielectrics.

4.
Materials (Basel) ; 14(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361361

RESUMO

We study the magnetic properties of platinum diselenide (PtSe2) intercalated with Ti, V, Cr, and Mn, using first-principle density functional theory (DFT) calculations and Monte Carlo (MC) simulations. First, we present the equilibrium position of intercalants in PtSe2 obtained from the DFT calculations. Next, we present the magnetic groundstates for each of the intercalants in PtSe2 along with their critical temperature. We show that Ti intercalants result in an in-plane AFM and out-of-plane FM groundstate, whereas Mn intercalant results in in-plane FM and out-of-plane AFM. V intercalants result in an FM groundstate both in the in-plane and the out-of-plane direction, whereas Cr results in an AFM groundstate both in the in-plane and the out-of-plane direction. We find a critical temperature of <0.01 K, 111 K, 133 K, and 68 K for Ti, V, Cr, and Mn intercalants at a 7.5% intercalation, respectively. In the presence of Pt vacancies, we obtain critical temperatures of 63 K, 32 K, 221 K, and 45 K for Ti, V, Cr, and Mn-intercalated PtSe2, respectively. We show that Pt vacancies can change the magnetic groundstate as well as the critical temperature of intercalated PtSe2, suggesting that the magnetic groundstate in intercalated PtSe2 can be controlled via defect engineering.

5.
J Phys Condens Matter ; 32(49): 495502, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32955019

RESUMO

Hydrogenation and fluorination have been presented as two possible methods to open a bandgap in graphene, required for field-effect transistor applications. In this work, we present a detailed study of the phonon-limited mobility of electrons and holes in hydrogenated graphene (graphane) and fluorinated graphene (graphene fluoride). We pay special attention to the out-of-plane acoustic (ZA) phonons, responsible for the highest scattering rates in graphane and graphene fluoride. Considering the most adverse cut-off for long-wavelength ZA phonons, we have obtained electron (hole) mobilities of 28 (41) cm2 V-1 s-1 for graphane and 96 (30) cm2 V-1 s-1 for graphene fluoride. Nonetheless, for a more favorable cut-off wavelength of ∼2.6 nm, significantly higher electron (hole) mobilities of 233 (389) cm2 V-1 s-1 for graphane and 460 (105) cm2 V-1 s-1 for graphene fluoride are achieved. Moreover, while complete suppression of ZA phonons can increase the electron (hole) mobility in graphane up to 278 (391) cm2 V-1 s-1, it does not affect the carrier mobilities in graphene fluoride. Velocity-field characteristics reveal that the electron velocity in graphane saturates at an electric field of ∼4 × 105 V cm-1. Comparing the mobilities with other two-dimensional (2D) semiconductors, we find that hydrogenation and fluorination are two promising avenues to realize a 2D semiconductor while providing good carrier mobilities.

6.
Materials (Basel) ; 12(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514338

RESUMO

Silicane, a hydrogenated monolayer of hexagonal silicon, is a candidate material for future complementary metal-oxide-semiconductor technology. We determined the phonon-limited mobility and the velocity-field characteristics for electrons and holes in silicane from first principles, relying on density functional theory. Transport calculations were performed using a full-band Monte Carlo scheme. Scattering rates were determined from interpolated electron-phonon matrix elements determined from density functional perturbation theory. We found that the main source of scattering for electrons and holes was the ZA phonons. Different cut-off wavelengths ranging from 0.58 nm to 16 nm were used to study the possible suppression of the out-of-plane acoustic (ZA) phonons. The low-field mobility of electrons (holes) was obtained as 5 (10) cm2/(Vs) with a long wavelength ZA phonon cut-off of 16 nm. We showed that higher electron (hole) mobilities of 24 (101) cm2/(Vs) can be achieved with a cut-off wavelength of 4 nm, while completely suppressing ZA phonons results in an even higher electron (hole) mobility of 53 (109) cm2/(Vs). Velocity-field characteristics showed velocity saturation at 3 × 105 V/cm, and negative differential mobility was observed at larger fields. The silicane mobility was competitive with other two-dimensional materials, such as transition-metal dichalcogenides or phosphorene, predicted using similar full-band Monte Carlo calculations. Therefore, silicon in its most extremely scaled form remains a competitive material for future nanoscale transistor technology, provided scattering with out-of-plane acoustic phonons could be suppressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...