Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
2.
Cell ; 187(1): 166-183.e25, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181739

RESUMO

To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.


Assuntos
Melanoma , Humanos , Redes Reguladoras de Genes , Imunoterapia , Melanócitos , Melanoma/tratamento farmacológico , Melanoma/genética , Fator de Transcrição 4/genética , Microambiente Tumoral
3.
Eur J Cancer ; 187: 7-14, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37098294

RESUMO

PURPOSE: Dedifferentiated melanoma (DedM) poses significant diagnostic challenges. We aimed to investigate the clinical, histopathological and molecular features of DedM. Methylation signature (MS) and copy number profiling (CNP) were carried out in a subgroup of cases. PATIENTS AND METHODS: A retrospective series of 78 DedM tissue samples from 61 patients retrieved from EORTC (European Organisation for Research and Treatment of Cancer) Melanoma Group centres were centrally reviewed. Clinical and histopathological features were retrieved. In a subgroup of patients, genotyping through Infinium Methylation microarray and CNP analysis was carried out. RESULTS: Most patients (60/61) had a metastatic DedM showing most frequently an unclassified pleomorphic, spindle cell, or small round cell morphology akin to undifferentiated soft tissue sarcoma, rarely associated with heterologous elements. Overall, among 20 successfully analysed tissue samples from 16 patients, we found retained melanoma-like MS in only 7 tissue samples while a non-melanoma-like MS was observed in 13 tissue samples. In two patients from whom multiple specimens were analysed, some of the samples had a preserved cutaneous melanoma MS while other specimens exhibited an epigenetic shift towards a mesenchymal/sarcoma-like profile, matching the histological features. In these two patients, CNP was largely identical across all analysed specimens, in line with their common clonal origin, despite significant modification of their epigenome. CONCLUSIONS: Our study further highlights that DedM represents a real diagnostic challenge. While MS and genomic CNP may help pathologists to diagnose DedM, we provide proof-of-concept that dedifferentiation in melanoma is frequently associated with epigenetic modifications.


Assuntos
Melanoma , Sarcoma , Neoplasias Cutâneas , Neoplasias de Tecidos Moles , Humanos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Melanoma/patologia , Estudos Retrospectivos , Sarcoma/diagnóstico
5.
Nature ; 610(7930): 190-198, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131018

RESUMO

Although melanoma is notorious for its high degree of heterogeneity and plasticity1,2, the origin and magnitude of cell-state diversity remains poorly understood. Equally, it is unclear whether growth and metastatic dissemination are supported by overlapping or distinct melanoma subpopulations. Here, by combining mouse genetics, single-cell and spatial transcriptomics, lineage tracing and quantitative modelling, we provide evidence of a hierarchical model of tumour growth that mirrors the cellular and molecular logic underlying the cell-fate specification and differentiation of the embryonic neural crest. We show that tumorigenic competence is associated with a spatially localized perivascular niche, a phenotype acquired through an intercellular communication pathway established by endothelial cells. Consistent with a model in which only a fraction of cells are fated to fuel growth, temporal single-cell tracing of a population of melanoma cells with a mesenchymal-like state revealed that these cells do not contribute to primary tumour growth but, instead, constitute a pool of metastatic initiating cells that switch cell identity while disseminating to secondary organs. Our data provide a spatially and temporally resolved map of the diversity and trajectories of melanoma cell states and suggest that the ability to support growth and metastasis are limited to distinct pools of cells. The observation that these phenotypic competencies can be dynamically acquired after exposure to specific niche signals warrant the development of therapeutic strategies that interfere with the cancer cell reprogramming activity of such microenvironmental cues.


Assuntos
Proliferação de Células , Melanoma , Metástase Neoplásica , Animais , Comunicação Celular , Diferenciação Celular , Linhagem da Célula , Rastreamento de Células , Reprogramação Celular , Células Endoteliais , Melanoma/genética , Melanoma/patologia , Mesoderma/patologia , Camundongos , Metástase Neoplásica/patologia , Crista Neural/embriologia , Fenótipo , Análise de Célula Única , Transcriptoma , Microambiente Tumoral
6.
Cancer Res ; 82(18): 3275-3290, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35834277

RESUMO

While immune checkpoint-based immunotherapy (ICI) shows promising clinical results in patients with cancer, only a subset of patients responds favorably. Response to ICI is dictated by complex networks of cellular interactions between malignant and nonmalignant cells. Although insights into the mechanisms that modulate the pivotal antitumoral activity of cytotoxic T cells (Tcy) have recently been gained, much of what has been learned is based on single-cell analyses of dissociated tumor samples, resulting in a lack of critical information about the spatial distribution of relevant cell types. Here, we used multiplexed IHC to spatially characterize the immune landscape of metastatic melanoma from responders and nonresponders to ICI. Such high-dimensional pathology maps showed that Tcy gradually evolve toward an exhausted phenotype as they approach and infiltrate the tumor. Moreover, a key cellular interaction network functionally linked Tcy and PD-L1+ macrophages. Mapping the respective spatial distributions of these two cell populations predicted response to anti-PD-1 immunotherapy with high confidence. These results suggest that baseline measurements of the spatial context should be integrated in the design of predictive biomarkers to identify patients likely to benefit from ICI. SIGNIFICANCE: This study shows that spatial characterization can address the challenge of finding efficient biomarkers, revealing that localization of macrophages and T cells in melanoma predicts patient response to ICI. See related commentary by Smalley and Smalley, p. 3198.


Assuntos
Melanoma , Segunda Neoplasia Primária , Antígeno B7-H1/genética , Biomarcadores , Comunicação Celular , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Melanoma/genética
7.
Cancers (Basel) ; 14(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35205840

RESUMO

Merkel cell carcinoma (MCC) is a rare type of skin cancer for which an in vitro model is still lacking. MCC tumorigenesis is associated either with the integration of Merkel cell polyomavirus into the host genome, or with the accumulation of somatic mutations upon chronic exposure to UV light. Transgenic animals expressing the viral oncoproteins, which are constitutively expressed in virus-related MCC, do not fully recapitulate MCC. Although cell-line-derived xenografts have been established for the two subtypes of MCC, they still present certain limitations. Here, we generated organotypic epithelial raft cultures (OERCs) of MCC by using primary human keratinocytes and both virus-positive and virus-negative MCC cell lines. The primary human keratinocytes and the tumor cells were grown on top of a dermal equivalent. Histological and immunohistochemical examination of the rafts confirmed the growth of MCC cells. Furthermore, gene expression analysis revealed differences in the expression profiles of the distinct tumor cells and the keratinocytes at the transcriptional level. In summary, considering the limited availability of patient samples, OERCs of MCC may constitute a suitable model for evaluating the efficacy and selectivity of new drug candidates against MCC; moreover, they are a potential tool to study the oncogenic mechanisms of this malignancy.

8.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638912

RESUMO

Cutaneous melanoma (CM) is the most aggressive form of skin cancer, and its worldwide incidence is rapidly increasing. Early stages can be successfully treated by surgery, but once metastasis has occurred, the prognosis is poor. However, some 5-10% of thick (≥2 mm) melanomas do not follow this scenario and run an unpredictable course. Little is known about the factors that contribute to metastasis in some patient with thick melanomas and the lack thereof in thick melanoma patients who never develop metastatic disease. We were therefore interested to study differential gene expression and pathway analysis and compare non-metastatic and metastatic thick melanomas. We found that the TNF-like weak inducer of apoptosis (TWEAK) pathway was upregulated in thick non-metastasizing melanomas. MAP3K14 (NIK1), BIRC2 (cIAP1), RIPK1, CASP7, CASP8, and TNF play an important role in inhibiting proliferation and invasion of tumor cells via the activation of the non-canonical NF-κB signaling pathway. In particular, this pathway sensitizes melanoma cells to TNF-alpha and activates the apoptosis module of the TWEAK pathway in thick non-metastasizing melanomas. Hence, our study suggests a potential role of the TWEAK pathway in inhibiting thick melanoma from metastasis. Exploitation of these genes and the pathway they control may open future therapeutic avenues.


Assuntos
Citocina TWEAK/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Adulto , Estudos de Coortes , Feminino , Humanos , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , RNA-Seq/métodos , Neoplasias Cutâneas/patologia
9.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639015

RESUMO

Loss-of-function events in tumor suppressor genes (TSGs) contribute to the development and progression of cutaneous malignant melanoma (CMM). Epigenetic alterations are the major mechanisms of TSG inactivation, in particular, silencing by promoter CpG-island hypermethylation. TSGs are valuable tools in diagnosis and prognosis and, possibly, in future targeted therapy. The aim of this narrative review is to outline bona fide TSGs affected by promoter CpG-island hypermethylation and their functional role in the progression of CMM. We conducted a systematic literature review to identify studies providing evidence of bona fide TSGs by cell line or animal experiments. We performed a broad first search and a gene-specific second search, supplemented by reference checking. We included studies describing bona fide TSGs in CMM with promoter CpG-island hypermethylation in which inactivating mechanisms were reported. We extracted data about protein role, pathway, experiments conducted to meet the bona fide criteria and hallmarks of cancer acquired by TSG inactivation. A total of 24 studies were included, describing 24 bona fide TSGs silenced by promoter CpG-island hypermethylation in CMM. Their effect on cell proliferation, apoptosis, growth, senescence, angiogenesis, migration, invasion or metastasis is also described. These data give further insight into the role of TSGs in the progression of CMM.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Melanoma/genética , Animais , Ilhas de CpG , Epigênese Genética , Epigenômica/métodos , Humanos , Melanoma/metabolismo , Melanoma/patologia
10.
Cancer Cell ; 39(8): 1135-1149.e8, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34143978

RESUMO

Therapy resistance arises from heterogeneous drug-tolerant persister cells or minimal residual disease (MRD) through genetic and nongenetic mechanisms. A key question is whether specific molecular features of the MRD ecosystem determine which of these two distinct trajectories will eventually prevail. We show that, in melanoma exposed to mitogen-activated protein kinase therapeutics, emergence of a transient neural crest stem cell (NCSC) population in MRD concurs with the development of nongenetic resistance. This increase relies on a glial cell line-derived neurotrophic factor-dependent signaling cascade, which activates the AKT survival pathway in a focal adhesion kinase (FAK)-dependent manner. Ablation of the NCSC population through FAK inhibition delays relapse in patient-derived tumor xenografts. Strikingly, all tumors that ultimately escape this treatment exhibit resistance-conferring genetic alterations and increased sensitivity to extracellular signal-regulated kinase inhibition. These findings identify an approach that abrogates the nongenetic resistance trajectory in melanoma and demonstrate that the cellular composition of MRD deterministically imposes distinct drug resistance evolutionary paths.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Melanoma/tratamento farmacológico , Melanoma/genética , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Imidazóis/farmacologia , Melanoma/patologia , Camundongos SCID , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Recidiva Local de Neoplasia/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Crista Neural/patologia , Oximas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Piridonas/farmacologia , Pirimidinonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
EMBO J ; 40(10): e106214, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33932034

RESUMO

BNIP3 is a mitophagy receptor with context-dependent roles in cancer, but whether and how it modulates melanoma growth in vivo remains unknown. Here, we found that elevated BNIP3 levels correlated with poorer melanoma patient's survival and depletion of BNIP3 in B16-F10 melanoma cells compromised tumor growth in vivo. BNIP3 depletion halted mitophagy and enforced a PHD2-mediated downregulation of HIF-1α and its glycolytic program both in vitro and in vivo. Mechanistically, we found that BNIP3-deprived melanoma cells displayed increased intracellular iron levels caused by heightened NCOA4-mediated ferritinophagy, which fostered PHD2-mediated HIF-1α destabilization. These effects were not phenocopied by ATG5 or NIX silencing. Restoring HIF-1α levels in BNIP3-depleted melanoma cells rescued their metabolic phenotype and tumor growth in vivo, but did not affect NCOA4 turnover, underscoring that these BNIP3 effects are not secondary to HIF-1α. These results unravel an unexpected role of BNIP3 as upstream regulator of the pro-tumorigenic HIF-1α glycolytic program in melanoma cells.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular Tumoral , Biologia Computacional , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Immunoblotting , Imuno-Histoquímica , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
Cancer Metastasis Rev ; 40(2): 603-624, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33870460

RESUMO

Over the past decades, melanoma-related mortality has remained nearly stable. The main reason is treatment failure of metastatic disease and the inherently linked knowledge gap regarding metastasis formation. In order to elicit invasion, melanoma cells manipulate the tumor microenvironment, gain motility, and adhere to the extracellular matrix and cancer-associated fibroblasts. Melanoma cells thereby express different cell adhesion molecules like laminins, integrins, N-cadherin, and others. Epithelial-mesenchymal transition (EMT) is physiological during embryologic development, but reactivated during malignancy. Despite not being truly epithelial, neural crest-derived malignancies like melanoma share similar biological programs that enable tumorigenesis, invasion, and metastasis. This complex phenomenon is termed phenotype switching and is intertwined with oncometabolism as well as dormancy escape. Additionally, it has been shown that primary melanoma shed exosomes that create a favorable premetastatic niche in the microenvironment of secondary organs and lymph nodes. Although the growing body of literature describes the aforementioned concepts separately, an integrative holistic approach is missing. Using melanoma as a tumor model, this review will shed light on these complex biological principles in an attempt to clarify the mechanistic metastatic pathways that dictate tumor and patient fate.


Assuntos
Melanoma/patologia , Neoplasias Cutâneas/patologia , Transição Epitelial-Mesenquimal , Humanos , Melanoma/metabolismo , Metástase Neoplásica , Neoplasias Cutâneas/metabolismo , Microambiente Tumoral
13.
Rheumatology (Oxford) ; 60(11): 5436-5446, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33693560

RESUMO

OBJECTIVE: In 2016 specific heterozygous gain-of-function mutations in the Mediterranean fever gene MEFV were reported as causal for a distinct autoinflammatory disease coined pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). We sought to provide an extended report on clinical manifestations in PAAND patients to date and evaluate the efficacy and safety of treatment with the IL-1-blocking agent anakinra. METHODS: We undertook an open-label pilot study with anakinra. Three patients were recruited in a preliminary phase of the study with the intention to expand the treatment cohort in case of a favourable response. Acute-phase reactants and plasma cytokine levels were monitored throughout. Skin biopsies at baseline and at week 12 were stained for relevant cytokines. Available clinical data on treatment responses were retrospectively collected on additional patients. RESULTS: The three patients from the preliminary phase of the study [patients 1-3 (P1-P3)] demonstrated one failed and two partial treatment responses, where one patient opted to continue treatment with anakinra and the other favoured adalimumab. While a partial systemic response was observed, there was no appreciable effect of anakinra on the prominent cutaneous manifestations, reflected in residual local inflammatory cytokine expression in lesional skin. These observations did not warrant further expansion of the treatment cohort. Clinical data was retrospectively collected on an additional eight patients (P4-P11), highlighting both dominant and recessive inheritance with variable penetrance in PAAND and common gastrointestinal involvement that was not previously appreciated. CONCLUSION: In our experience, while anakinra appears safe, it was not superior to biologicals targeting TNF-α in PAAND despite evidence directly implicating dysregulated IL-1ß signalling.


Assuntos
Antirreumáticos/uso terapêutico , Doenças Hereditárias Autoinflamatórias/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Transtornos Leucocíticos/congênito , Dermatopatias Genéticas/tratamento farmacológico , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Transtornos Leucocíticos/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Fenótipo , Projetos Piloto , Pirina/genética
14.
Res Vet Sci ; 134: 137-146, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33383491

RESUMO

"Humanized" immunodeficient mice generated via the transplantation of CD34+ human hematopoietic stem cells (hHSC) are an important preclinical model system. The triple transgenic NOD.Cg-PrkdcscidIl2rgtm1Wjl Tg(CMV-IL3,CSF2,KITLG)1Eav/MloySzJ (NSGS) mouse line is increasingly used as recipient for CD34+ hHSC engraftment. NSGS mice combine the features of the highly immunodeficient NSG mice with transgenic expression of the human myeloid stimulatory cytokines GM-CSF, IL-3, and Kit ligand. While generating humanized NSGS (huNSGS) mice from two independent cohorts, we encountered a fatal macrophage activation syndrome (MAS)-like phenotype resulting from the transplantation of CD34+ hHSC. huNSGS mice exhibiting this phenotype declined clinically starting at approximately 10 weeks following CD34+ hHSC engraftment, with all mice requiring euthanasia by 16 weeks. Gross changes comprised small, irregular liver, splenomegaly, cardiomegaly, and generalized pallor. Hematological abnormalities included severe thrombocytopenia and anemia. Pathologically, huNSGS spontaneously developed a disseminated histiocytosis with infiltrates of activated macrophages and hemophagocytosis predominantly affecting the liver, spleen, bone marrow, and pancreas. The infiltrates were chimeric with a mixture of human and mouse macrophages. Immunohistochemistry suggested activation of the inflammasome in both human and murine macrophages. Active Epstein-Barr virus infection was not a feature. Although the affected mice exhibited robust chimerism of the spleen and bone marrow, the phenotype often developed in the face of low chimerism of the peripheral blood. Given the high penetrance and early lethality associated with the MAS-like phenotype here described, we urge caution when considering the use of huNSGS mice for the development of long-term studies.


Assuntos
Síndrome de Ativação Macrofágica/patologia , Macrófagos/microbiologia , Animais , Antígenos CD34 , Proteína Quinase Ativada por DNA/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Herpesvirus Humano 4 , Histiocitose/imunologia , Humanos , Subunidade gama Comum de Receptores de Interleucina/imunologia , Síndrome de Ativação Macrofágica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Recombinantes/imunologia , Fator de Células-Tronco/imunologia
15.
Histopathology ; 78(4): 607-626, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32970867

RESUMO

AIMS: The role of inflammation in conventional cutaneous melanoma has been extensively studied, whereas only little is known about the inflammatory microenvironment and immunogenic properties of spitzoid melanocytic neoplasms. The composition of infiltrating immune cells and the architectural distribution of the inflammation, in particular, are still obscure. This is the first study, to our knowledge, to systematically characterise the inflammatory patterns and the leucocyte subsets in spitzoid melanocytic lesions. METHODS AND RESULTS: We examined 79 spitzoid neoplasms including banal Spitz naevi (SN, n = 50), atypical Spitz tumours (AST, n = 17) and malignant Spitz tumours (MST, n = 12) using histopathological analysis and immunohistochemistry. Spitzoid melanocytic lesions showed a high frequency (67.1%, n = 53 of 79) of inflammation. Four inflammatory patterns were identified according to architectural composition, distribution and intensity of inflammation. The majority of the inflammatory infiltrate corresponded to CD3+ /CD8+ T lymphocytes (56.1%), followed by CD3+ /CD4+ T cells (35.7%) and CD68+ histiocytes (20.3%). CD3+ /TIA-1+ cytotoxic T lymphocytes constituted 3.7% of inflammatory cells. Rarely, CD3+ / granzyme B+ cytotoxic T lymphocytes (2.7%) and CD138+ plasma cells (0.5%) were detected in the infiltrating immune cells. There was no significant difference in the inflammatory cellular composition among the spitzoid melanocytic subgroups (SN versus AST versus MST). CONCLUSION: Our findings demonstrate that Spitz tumours are highly immunogenic lesions. Inflammation with the presence of lymphocytic aggregates predominated in SN, but was not distinctive for this melanocytic category. A strong and intense inflammation was suggestive of an underlying malignancy. The infiltrating cytotoxic T lymphocyte subsets in Spitz tumours deserve further investigation in larger study cohorts to elucidate prognostic and immuno-oncological therapeutic relevance.


Assuntos
Melanoma/patologia , Neoplasias Cutâneas/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Melanoma/diagnóstico , Melanoma/imunologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/imunologia , Melanoma Maligno Cutâneo
16.
Epigenomics ; 12(19): 1689-1706, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33125285

RESUMO

Aim: To evaluate CpG methylation of long interspersed nuclear elements 1 (LINE-1) and human endogenous retrovirus K (HERV-K) retroelements as potential prognostic biomarkers in cutaneous melanoma. Materials & methods: Methylation of HERV-K and LINE-1 retroelements was assessed in resected melanoma tissues from 82 patients ranging in age from 14 to 88 years. In addition, nevi from eight patients were included for comparison with nonmalignant melanocytic lesions. Results: Methylation levels were lower in melanomas than in nevi. HERV-K and LINE-1 methylation were decreased in melanoma patients with clinical parameters associated with adverse prognosis, while they were independent of age and gender. Hypomethylation of HERV-K (but not LINE-1) was an independent predictor of reduced disease-free survival. Conclusion: HERV-K hypomethylation can be a potential independent biomarker of melanoma recurrence.


Assuntos
Metilação de DNA , Elementos Nucleotídeos Longos e Dispersos , Melanoma/genética , Retroelementos , Neoplasias Cutâneas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ilhas de CpG , Intervalo Livre de Doença , Retrovirus Endógenos , Feminino , Humanos , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Estadiamento de Neoplasias , Nevo/genética , Prognóstico , Neoplasias Cutâneas/patologia , Sequências Repetidas Terminais , Adulto Jovem
17.
Cancer Res ; 80(14): 2983-2995, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32503808

RESUMO

Epithelial-to-mesenchymal transition (EMT)-inducing transcription factors (TF) are well known for their ability to induce mesenchymal states associated with increased migratory and invasive properties. Unexpectedly, nuclear expression of the EMT-TF ZEB2 in human primary melanoma has been shown to correlate with reduced invasion. We report here that ZEB2 is required for outgrowth for primary melanomas and metastases at secondary sites. Ablation of Zeb2 hampered outgrowth of primary melanomas in vivo, whereas ectopic expression enhanced proliferation and growth at both primary and secondary sites. Gain of Zeb2 expression in pulmonary-residing melanoma cells promoted the development of macroscopic lesions. In vivo fate mapping made clear that melanoma cells undergo a conversion in state where ZEB2 expression is replaced by ZEB1 expression associated with gain of an invasive phenotype. These findings suggest that reversible switching of the ZEB2/ZEB1 ratio enhances melanoma metastatic dissemination. SIGNIFICANCE: ZEB2 function exerts opposing behaviors in melanoma by promoting proliferation and expansion and conversely inhibiting invasiveness, which could be of future clinical relevance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/2983/F1.large.jpg.


Assuntos
Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , Melanoma/patologia , Fatores de Transcrição/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Melanoma/genética , Melanoma/metabolismo , Camundongos , Invasividade Neoplásica , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
18.
Cell Rep ; 31(11): 107765, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32553158

RESUMO

Tumor cell plasticity, including transdifferentiation, is thought to be a key driver of therapy failure, tumor dormancy, and metastatic dissemination. Although melanoma cells have been shown to adopt various phenotypic features in vitro, direct in vivo evidence of metastatic cell plasticity remains sparse. Here, we combine lineage tracing in a spontaneous metastatic mouse model of melanoma, advanced imaging, and single-cell RNA sequencing approaches to search for pathophysiologically relevant melanoma cellular states. We identify melanoma cells in intravascular niches of various metastatic organs. These cells are quiescent, are negative for characteristic melanoma markers, and acquire endothelial cell features. We replicate the endothelial transdifferentiation (EndT) finding in another mouse model and provide evidence of EndT in BRAFV600E-metastatic biopsies from human lung, brain, and small intestine, thus highlighting the clinical relevance of these findings. The tumor-vasculature pattern described herein may contribute to melanoma dormancy within metastatic organs and represent a putative target for therapies.


Assuntos
Transdiferenciação Celular/fisiologia , Células Endoteliais/citologia , Melanoma/patologia , Metástase Neoplásica/patologia , Microambiente Tumoral/fisiologia , Animais , Biomarcadores Tumorais/genética , Diferenciação Celular/fisiologia , Melanoma/metabolismo , Camundongos Transgênicos
19.
Epigenetics ; 15(12): 1319-1324, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32475296

RESUMO

Merkel cell carcinoma (MCC) is a very rare, but highly aggressive skin cancer which occurs mainly in elderly patients. MCC cells show an expression pattern of three cell lineages: epithelial, neuroendocrine, and B-cell progenitor. This trilinear expression pattern suggests stemness activity in MCC. The etiopathogenesis of MCC is either linked to the Merkel cell polyomavirus (MCPyV) or in a smaller proportion (20%) to high levels of UV-induced somatic mutations. Both viral presence and accumulation of mutations have been shown to be associated with accelerated DNA methylation Age (DNAmAge) compared to chronological age. The MCC DNAmAge was significantly lower compared to the chronological age, which was irrespective of the viral presence or mutational burden. Although these features indicate some aspects of stemness in MCC cells, gene-expression-based pluripotency testing did not provide evidence for pluripotency of MCC cells.


Assuntos
Carcinoma de Célula de Merkel/genética , Senescência Celular , Epigênese Genética , Acúmulo de Mutações , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Célula de Merkel/patologia , Carcinoma de Célula de Merkel/virologia , Metilação de DNA , Feminino , Humanos , Masculino , Poliomavírus das Células de Merkel/patogenicidade , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/fisiologia
20.
FEBS Open Bio ; 10(7): 1326-1341, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32431053

RESUMO

Spitzoid neoplasms are a challenging group of cutaneous melanocytic proliferations. They are characterized by epithelioid and/or spindle-shaped melanocytes and classified as benign Spitz nevi (SN), atypical Spitz tumors (AST), or malignant Spitz tumors (MST). The intermediate AST category represents a diagnostically challenging group since on purely histopathological grounds, their benign or malignant character remains unpredictable. This results in uncertainties in patient treatment and prognosis. The molecular properties of Spitzoid lesions, especially their transcriptomic landscape, remain poorly understood, and genomic alterations in melanoma-associated oncogenes are typically absent. The aim of this study was to characterize their transcriptome with digital mRNA expression profiling. Formalin-fixed paraffin-embedded samples (including 27 SN, 10 AST, and 14 MST) were analyzed using the NanoString nCounter PanCancer Pathways Panel. The number of significantly differentially expressed genes in SN vs. MST, SN vs. AST, and AST vs. MST was 68, 167, and 18, respectively. Gene set enrichment analysis revealed upregulation of pathways related to epithelial-mesenchymal transition and immunomodulatory-, angiogenesis-, hormonal-, and myogenesis-associated processes in AST and MST. A molecular signature of SN vs. MST was discovered based on the top-ranked most informative genes: NRAS, NF1, BMP2, EIF2B4, IFNA17, and FZD9. The AST samples showed intermediate levels of the identified signature. This implies that the gene signature can potentially be used to distinguish high-grade from low-grade AST with a larger study cohort in the future. This combined histopathological and transcriptomic methodology is promising for prospective diagnostics of Spitzoid neoplasms and patient management in dermatological oncology.


Assuntos
Nevo de Células Epitelioides e Fusiformes/genética , RNA Mensageiro/genética , Neoplasias Cutâneas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Biologia Computacional , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nevo de Células Epitelioides e Fusiformes/patologia , Neoplasias Cutâneas/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...