Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Hepatol Commun ; 5(8): 1412-1425, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430785

RESUMO

The antidiabetic drug pioglitazone is, to date, the most efficacious oral drug recommended off-label for the treatment of nondiabetic or diabetic patients with biopsy-proven nonalcoholic steatohepatitis (NASH). However, weight gain and edema side effects have limited its use for NASH. Pioglitazone is a mixture of two stereoisomers ((R)-pioglitazone and (S)-pioglitazone) that interconvert in vitro and in vivo. We aimed to characterize their individual pharmacology to develop a safer and potentially more potent drug for NASH. We stabilized the stereoisomers of pioglitazone with deuterium at the chiral center. Preclinical studies with deuterium-stabilized (R)-pioglitazone (PXL065) and (S)-pioglitazone demonstrated that (R)-pioglitazone retains the efficacy of pioglitazone in NASH, including reduced hepatic triglycerides, free fatty acids, cholesterol, steatosis, inflammation, hepatocyte enlargement, and fibrosis. Although both stereoisomers inhibit the mitochondrial pyruvate carrier, PXL065 shows limited to no peroxisome proliferator-activated receptor gamma (PPARγ) activity, whereas (S)-pioglitazone appears responsible for the PPARγ activity and associated weight gain. Nonetheless, in preclinical models, both stereoisomers reduce plasma glucose and hepatic fibrosis to the same extent as pioglitazone, suggesting that these benefits may also be mediated by altered mitochondrial metabolism. In a phase 1a clinical study, we demonstrated safety and tolerability of single 7.5-mg, 22.5-mg, and 30-mg doses of PXL065 as well as preferential exposure to the (R)-stereoisomer in comparison to 45-mg pioglitazone. Conclusion: PXL065 at a dose lower than 22.5 mg is predicted to exhibit efficacy for NASH equal to, or greater than, 45-mg pioglitazone without the potentially detrimental weight gain and edema. The development of PXL065 for NASH represents a unique opportunity to leverage the therapeutic benefits of pioglitazone, while reducing or eliminating PPARγ-related side effects.

2.
Molecules ; 24(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100979

RESUMO

In this work we summarize our understanding of melanocortin 4 receptor (MC4R) pathway activation, aiming to define a safe and effective therapeutic targeting strategy for the MC4R. Delineation of cellular MC4R pathways has provided evidence for distinct MC4R signaling events characterized by unique receptor activation kinetics. While these studies remain narrow in scope, and have largely been explored with peptidic agonists, the results provide a possible correlation between distinct ligand groups and differential MC4R activation kinetics. In addition, when a set of small-molecule and peptide MC4R agonists are compared, evidence of biased signaling has been reported. The results of such mechanistic studies are discussed.


Assuntos
Peptídeos/farmacocinética , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais , Animais , Peso Corporal , Sistema Cardiovascular/efeitos dos fármacos , AMP Cíclico/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Cinética , Ligantes , Peptídeos/química , Peptídeos/farmacologia , Primatas , Ligação Proteica , Transporte Proteico , Roedores , Transdução de Sinais/efeitos dos fármacos , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
3.
J Clin Endocrinol Metab ; 103(7): 2601-2612, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726959

RESUMO

Context: The hypothalamic melanocortin 4 receptor (MC4R) pathway serves a critical role in regulating body weight. Loss of function (LoF) mutations in the MC4R pathway, including mutations in the pro-opiomelanocortin (POMC), prohormone convertase 1 (PCSK1), leptin receptor (LEPR), or MC4R genes, have been shown to cause early-onset severe obesity. Methods: Through a comprehensive epidemiological analysis of known and predicted LoF variants in the POMC, PCSK1, and LEPR genes, we sought to estimate the number of US individuals with biallelic MC4R pathway LoF variants. Results: We predict ~650 α-melanocyte-stimulating hormone (MSH)/POMC, 8500 PCSK1, and 3600 LEPR homozygous and compound heterozygous individuals in the United States, cumulatively enumerating >12,800 MC4R pathway-deficient obese patients. Few of these variants have been genetically diagnosed to date. These estimates increase when we include a small subset of less rare variants: ß-MSH/POMC,PCSK1 N221D, and a PCSK1 LoF variant (T640A). To further define the MC4R pathway and its potential impact on obesity, we tested associations between body mass index (BMI) and LoF mutation burden in the POMC, PCSK1, and LEPR genes in various populations. We show that the cumulative allele burden in individuals with two or more LoF alleles in one or more genes in the MC4R pathway are predisposed to a higher BMI than noncarriers or heterozygous LoF carriers with a defect in only one gene. Conclusions: Our analysis represents a genetically rationalized study of the hypothalamic MC4R pathway aimed at genetic patient stratification to determine which obese subpopulations should be studied to elucidate MC4R agonist (e.g., setmelanotide) treatment responsiveness.


Assuntos
Mutação com Perda de Função/genética , Obesidade/epidemiologia , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética , Transdução de Sinais/genética , Alelos , Fármacos Antiobesidade/farmacologia , Índice de Massa Corporal , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Obesidade/tratamento farmacológico , Pró-Opiomelanocortina/genética , Pró-Proteína Convertase 1/genética , Receptor Tipo 4 de Melanocortina/agonistas , Receptores para Leptina/genética , Estados Unidos/epidemiologia , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
4.
Mol Metab ; 6(10): 1321-1329, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29031731

RESUMO

OBJECTIVE: Pro-opiomelanocortin (POMC)-derived peptides act on neurons expressing the Melanocortin 4 receptor (MC4R) to reduce body weight. Setmelanotide is a highly potent MC4R agonist that leads to weight loss in diet-induced obese animals and in obese individuals with complete POMC deficiency. While POMC deficiency is very rare, 1-5% of severely obese individuals harbor heterozygous mutations in MC4R. We sought to assess the efficacy of Setmelanotide in human MC4R deficiency. METHODS: We studied the effects of Setmelanotide on mutant MC4Rs in cells and the weight loss response to Setmelanotide administration in rodent studies and a human clinical trial. We annotated the functional status of 369 published MC4R variants. RESULTS: In cells, we showed that Setmelanotide is significantly more potent at MC4R than the endogenous ligand alpha-melanocyte stimulating hormone and can disproportionally rescue signaling by a subset of severely impaired MC4R mutants. Wild-type rodents appear more sensitive to Setmelanotide when compared to MC4R heterozygous deficient mice, while MC4R knockout mice fail to respond. In a 28-day Phase 1b clinical trial, Setmelanotide led to weight loss in obese MC4R variant carriers. Patients with POMC defects upstream of MC4R show significantly more weight loss with Setmelanotide than MC4R deficient patients or obese controls. CONCLUSIONS: Setmelanotide led to weight loss in obese people with MC4R deficiency; however, further studies are justified to establish whether Setmelanotide can elicit clinically meaningful weight loss in a subset of the MC4R deficient obese population.


Assuntos
Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/deficiência , alfa-MSH/análogos & derivados , Insuficiência Adrenal/tratamento farmacológico , Insuficiência Adrenal/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , alfa-MSH/farmacologia
5.
Atherosclerosis ; 264: 100-107, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28655430

RESUMO

BACKGROUND AND AIMS: Oxidative modification of lipoproteins is a crucial step in atherosclerosis development. Isotopic-reinforced polyunsaturated fatty acids (D-PUFAs) are more resistant to reactive oxygen species-initiated chain reaction of lipid peroxidation than regular hydrogenated (H-)PUFAs. We aimed at investigating the effect of D-PUFA treatment on lipid peroxidation, hypercholesterolemia and atherosclerosis development. METHODS: Transgenic APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism, were pre-treated with D-PUFAs or control H-PUFAs-containing diet (1.2%, w/w) for 4 weeks. Thereafter, mice were fed a Western-type diet (containing 0.15% cholesterol, w/w) for another 12 weeks, while continuing the D-/H-PUFA treatment. RESULTS: D-PUFA treatment markedly decreased hepatic and plasma F2-isoprostanes (approx. -80%) and prostaglandin F2α (approx. -40%) as compared to H-PUFA treatment. Moreover, D-PUFAs reduced body weight gain during the study (-54%) by decreasing body fat mass gain (-87%) without altering lean mass. D-PUFAs consistently reduced plasma total cholesterol levels (approx. -25%), as reflected in reduced plasma non-HDL-cholesterol (-28%). Additional analyses of hepatic cholesterol metabolism indicated that D-PUFAs reduced the hepatic cholesterol content (-21%). Sterol markers of intestinal cholesterol absorption and cholesterol breakdown were decreased. Markers of cholesterol synthesis were increased. Finally, D-PUFAs reduced atherosclerotic lesion area formation throughout the aortic root of the heart (-26%). CONCLUSIONS: D-PUFAs reduce body weight gain, improve cholesterol handling and reduce atherosclerosis development by reducing lipid peroxidation and plasma cholesterol levels. D-PUFAs, therefore, represent a promising new strategy to broadly reduce rates of lipid peroxidation, and combat hypercholesterolemia and cardiovascular diseases.


Assuntos
Anticolesterolemiantes/farmacologia , Antioxidantes/farmacologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Colesterol/sangue , Ácidos Graxos Insaturados/farmacologia , Hipercolesterolemia/tratamento farmacológico , Peroxidação de Lipídeos/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/sangue , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apolipoproteína E3/genética , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , Dinoprosta/sangue , Modelos Animais de Doenças , F2-Isoprostanos/sangue , Feminino , Predisposição Genética para Doença , Hipercolesterolemia/sangue , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Camundongos Knockout para ApoE , Fenótipo , Placa Aterosclerótica , Fatores de Tempo , Aumento de Peso/efeitos dos fármacos
6.
Br J Pharmacol ; 173(17): 2614-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27339818

RESUMO

BACKGROUND AND PURPOSE: α- and ß-melanocyte-stimulating hormones (MSH) are derived from pro-opiomelanocortin (POMC) and are the natural agonist ligands of the melanocortin 4 receptor, a key regulator of energy homeostasis. Recent rodent and human data have implicated the MAGEL2 gene, which may regulate activation of POMC neurons, as a significant contributor to the metabolic symptoms observed in Prader-Willi Syndrome (PWS). Firstly, patients with protein truncating mutations in MAGEL2 exhibit numerous clinical characteristics of PWS. Secondly, Magel2-null mice may not normally activate MC4 receptors, as they are defective in the activation of their POMC neurons and hence may fail to normally release the POMC-derived MC4 receptor agonist ligands α- and ß-MSH. Magel2-null mice represent a tractable animal model for the metabolic and appetitive imbalance seen in patients with PWS. EXPERIMENTAL APPROACH: We tested a dose titration of the MC4 receptor agonist setmelanotide, in development for rare monogenic forms of obesity, in Magel2-null mice. KEY RESULTS: We show that Magel2-null mice are hypersensitive to the appetite suppressing and metabolic effects of setmelanotide. CONCLUSION AND IMPLICATIONS: Setmelanotide may be a useful investigational hormone/neuropeptide replacement therapy for PWS and rare monogenic forms of obesity exhibiting impaired function of POMC neurons.


Assuntos
Antígenos de Neoplasias/genética , Regulação do Apetite/efeitos dos fármacos , Metabolismo/efeitos dos fármacos , Proteínas/genética , Receptor Tipo 4 de Melanocortina/agonistas , alfa-MSH/análogos & derivados , Animais , Antígenos de Neoplasias/metabolismo , Relação Dose-Resposta a Droga , Feminino , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Síndrome de Prader-Willi/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteínas/metabolismo , Relação Estrutura-Atividade , alfa-MSH/administração & dosagem , alfa-MSH/farmacologia
7.
Mol Endocrinol ; 29(11): 1619-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26418335

RESUMO

The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in the brain, where it controls energy balance through pathways including α-melanocyte-stimulating hormone (α-MSH)-dependent signaling. We have reported that the MC4R can exist in an active conformation that signals constitutively by increasing cAMP levels in the absence of receptor desensitization. We asked whether synthetic MC4R agonists differ in their ability to increase intracellular cAMP over time in Neuro2A cells expressing endogenous MC4R and exogenous, epitope-tagged hemagglutinin-MC4R-green fluorescent protein. By analyzing intracellular cAMP in a temporally resolved Förster resonance energy transfer assay, we show that withdrawal of α-MSH leads to a quick reversal of cAMP induction. By contrast, the synthetic agonist melanotan II (MTII) induces a cAMP signal that persists for at least 1 hour after removal of MTII from the medium and cannot be antagonized by agouti related protein. Similarly, in mHypoE-42 immortalized hypothalamic neurons, MTII, but not α-MSH, induced persistent AMP kinase signal, which occurs downstream of increased cAMP. By using a fluorescence recovery after photobleaching assay, it appears that the receptor exposed to MTII continues to signal after being internalized. Similar to MTII, the synthetic MC4R agonists, THIQ and BIM-22511, but not LY2112688, induced prolonged cAMP signaling after agonist withdrawal. However, agonist-exposed MC4R desensitized to the same extent, regardless of the ligand used and regardless of differences in receptor intracellular retention kinetics. In conclusion, α-MSH and LY2112688, when compared with MTII, THIQ, and BIM-22511, vary in the duration of the acute cAMP response, showing distinct temporal signaling selectivity, possibly linked to specific cell compartments from which cAMP signals may originate.


Assuntos
Proteína Relacionada com Agouti/farmacologia , AMP Cíclico/metabolismo , Peptídeos Cíclicos/farmacologia , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , alfa-MSH/análogos & derivados , alfa-MSH/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adenilato Quinase/metabolismo , Animais , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Camundongos , Peptídeos/farmacologia , Fotodegradação , Conformação Proteica , Receptor Tipo 4 de Melanocortina/genética , Tetra-Hidroisoquinolinas/farmacologia , Triazóis/farmacologia , alfa-MSH/farmacologia
8.
Proc Natl Acad Sci U S A ; 112(12): E1471-9, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775521

RESUMO

Therapeutics developed and sold as racemates can exhibit a limited therapeutic index because of side effects resulting from the undesired enantiomer (distomer) and/or its metabolites, which at times, forces researchers to abandon valuable scaffolds. Therefore, most chiral drugs are developed as single enantiomers. Unfortunately, the development of some chirally pure drug molecules is hampered by rapid in vivo racemization. The class of compounds known as immunomodulatory drugs derived from thalidomide is developed and sold as racemates because of racemization at the chiral center of the 3-aminoglutarimide moiety. Herein, we show that replacement of the exchangeable hydrogen at the chiral center with deuterium allows the stabilization and testing of individual enantiomers for two thalidomide analogs, including CC-122, a compound currently in human clinical trials for hematological cancers and solid tumors. Using "deuterium-enabled chiral switching" (DECS), in vitro antiinflammatory differences of up to 20-fold are observed between the deuterium-stabilized enantiomers. In vivo, the exposure is dramatically increased for each enantiomer while they retain similar pharmacokinetics. Furthermore, the single deuterated enantiomers related to CC-122 exhibit profoundly different in vivo responses in an NCI-H929 myeloma xenograft model. The (-)-deuterated enantiomer is antitumorigenic, whereas the (+)-deuterated enantiomer has little to no effect on tumor growth. The ability to stabilize and differentiate enantiomers by DECS opens up a vast window of opportunity to characterize the class effects of thalidomide analogs and improve on the therapeutic promise of other racemic compounds, including the development of safer therapeutics and the discovery of new mechanisms and clinical applications for existing therapeutics.


Assuntos
Anti-Inflamatórios/química , Antineoplásicos/química , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Piperidonas/química , Quinazolinonas/química , Talidomida/análogos & derivados , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Leucócitos Mononucleares/citologia , Camundongos , Camundongos SCID , Modelos Químicos , Transplante de Neoplasias , Neoplasias/imunologia , Estereoisomerismo , Talidomida/química , Fator de Necrose Tumoral alfa/metabolismo
9.
EMBO Mol Med ; 7(3): 288-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25652173

RESUMO

We assessed the efficacy of simultaneous agonism at the glucagon-like peptide-1 receptor (GLP-1R) and the melanocortin-4 receptor (MC4R) for the treatment of obesity and diabetes in rodents. Diet-induced obese (DIO) mice were chronically treated with either the long-acting GLP-1R agonist liraglutide, the MC4R agonist RM-493 or a combination of RM-493 and liraglutide. Co-treatment of DIO mice with RM-493 and liraglutide improves body weight loss and enhances glycemic control and cholesterol metabolism beyond what can be achieved with either mono-therapy. The superior metabolic efficacy of this combination therapy is attributed to the anorectic and glycemic actions of both drugs, along with the ability of RM-493 to increase energy expenditure. Interestingly, compared to mice treated with liraglutide alone, hypothalamic Glp-1r expression was higher in mice treated with the combination therapy after both acute and chronic treatment. Further, RM-493 enhanced hypothalamic Mc4r expression. Hence, co-dosing with MC4R and GLP-1R agonists increases expression of each receptor, indicative of minimized receptor desensitization. Together, these findings suggest potential opportunities for employing combination treatments that comprise parallel MC4R and GLP-1R agonism for the treatment of obesity and diabetes.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Hipoglicemiantes/uso terapêutico , Obesidade/tratamento farmacológico , Receptor Tipo 4 de Melanocortina/agonistas , Receptores de Glucagon/agonistas , alfa-MSH/análogos & derivados , Animais , Sinergismo Farmacológico , Quimioterapia Combinada , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes/farmacologia , Liraglutida , Camundongos Obesos , Resultado do Tratamento , alfa-MSH/farmacologia , alfa-MSH/uso terapêutico
10.
J Clin Endocrinol Metab ; 100(4): 1639-45, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25675384

RESUMO

CONTEXT: Activation of the melanocortin-4 receptor (MC4R) with the synthetic agonist RM-493 decreases body weight and increases energy expenditure (EE) in nonhuman primates. The effects of MC4R agonists on EE in humans have not been examined to date. OBJECTIVE, DESIGN, AND SETTING: In a randomized, double-blind, placebo-controlled, crossover study, we examined the effects of the MC4R agonist RM-493 on resting energy expenditure (REE) in obese subjects in an inpatient setting. STUDY PARTICIPANTS AND METHODS: Twelve healthy adults (6 men and 6 women) with body mass index of 35.7 ± 2.9 kg/m(2) (mean ± SD) received RM-493 (1 mg/24 h) or placebo by continuous subcutaneous infusion over 72 hours, followed immediately by crossover to the alternate treatment. All subjects received a weight-maintenance diet (50% carbohydrate, 30% fat, and 20% protein) and performed 30 minutes of standardized exercise daily. Continuous EE was measured on the third treatment day in a room calorimeter, and REE in the fasting state was defined as the mean of 2 30-minute resting periods. RESULTS: RM-493 increased REE vs placebo by 6.4% (95% confidence interval, 0.68-13.02%), on average by 111 kcal/24 h (95% confidence interval, 15-207 kcal, P = .03). Total daily EE trended higher, whereas the thermic effect of a test meal and exercise EE did not differ significantly. The 23-hour nonexercise respiratory quotient was lower during RM-493 treatment (0.833 ± 0.021 vs 0.848 ± 0.022, P = .02). No adverse effect on heart rate or blood pressure was observed. CONCLUSIONS: Short-term administration of the MC4R agonist RM-493 increases REE and shifts substrate oxidation to fat in obese individuals.


Assuntos
Fármacos Antiobesidade/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/agonistas , alfa-MSH/análogos & derivados , Adulto , Terapia Combinada , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/terapia , Descanso , Programas de Redução de Peso , Adulto Jovem , alfa-MSH/administração & dosagem
11.
Front Nutr ; 1: 31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25988130

RESUMO

The gastrointestinal peptide hormone ghrelin is the endogenous ligand of the growth hormone secretagogue receptor (a.k.a. ghrelin receptor, GHR). Currently, ghrelin is the only circulating peripheral hormone with the ability to promote a positive energy balance by stimulating food intake while decreasing energy expenditure and body fat utilization, as defined in rodents. Based on these and additional, beneficial effects on metabolism, the endogenous ghrelin system is considered an attractive target to treat diverse pathological conditions including those associated with eating/wasting disorders and cachexia. As the pharmacological potential of ghrelin is hampered by its relatively short half-life, ghrelin analogs with enhanced pharmacokinetics offer the potential to sustainably improve metabolism. One of these ghrelin analogs is the pentapeptide RM-131, which promotes food intake and adiposity with higher potency as compared to native ghrelin in rodents. Whereas, the effect of RM-131 on energy metabolism is solidly confirmed in rodents, it remains elusive whether RM-131 exerts its effect solely via the ghrelin receptor. Accordingly, we assessed the receptor specificity of RM-131 to promote food intake and adiposity in mice lacking the GHR. Our data show that in wildtype mice RM-131 potently promotes weight gain and adiposity through stimulation of food intake. However, RM-131 fails to affect food intake and body weight in mice lacking the GHR, underlining that the anabolic effects of RM-131 are mediated via the ghrelin receptor in mice.

13.
Cancer Res ; 69(7): 3060-8, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19318552

RESUMO

NOTCH signaling is deregulated in the majority of T-cell acute lymphoblastic leukemias (T-ALL) as a result of activating mutations in NOTCH1. Gamma secretase inhibitors (GSI) block proteolytic activation of NOTCH receptors and may provide a targeted therapy for T-ALL. We have investigated the mechanisms of GSI sensitivity across a panel of T-ALL cell lines, yielding an approach for patient stratification based on pathway activity and also providing a rational combination strategy for enhanced response to GSI. Whereas the NOTCH1 mutation status does not serve as a predictor of GSI sensitivity, a gene expression signature of NOTCH pathway activity does correlate with response, and may be useful in the selection of patients more likely to respond to GSI. Furthermore, inhibition of the NOTCH pathway activity signature correlates with the induction of the cyclin-dependent kinase inhibitors CDKN2D (p19(INK4d)) and CDKN1B (p27(Kip1)), leading to derepression of RB and subsequent exit from the cell cycle. Consistent with this evidence of cell cycle exit, short-term exposure of GSI resulted in sustained molecular and phenotypic effects after withdrawal of the compound. Combination treatment with GSI and a small molecule inhibitor of CDK4 produced synergistic growth inhibition, providing evidence that GSI engagement of the CDK4/RB pathway is an important mechanism of GSI action and supports further investigation of this combination for improved efficacy in treating T-ALL.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Óxidos S-Cíclicos/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Inibidores de Proteases/farmacologia , Receptor Notch1/antagonistas & inibidores , Proteína do Retinoblastoma/metabolismo , Tiadiazóis/farmacologia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p19/biossíntese , Inibidor de Quinase Dependente de Ciclina p27 , Fase G1/efeitos dos fármacos , Fase G1/genética , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Notch1/genética , Receptor Notch1/metabolismo , Fase S/efeitos dos fármacos , Fase S/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica , Transfecção
15.
Obesity (Silver Spring) ; 16(7): 1510-5, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18421274

RESUMO

OBJECTIVE: To further address the function of the Y5 receptor in energy homeostasis, we investigated the effects of a novel spironolactone Y5 antagonist in diet-induced obese (DIO) mice. METHODS AND PROCEDURES: Male C57BL/6 or Npy5r(-/-) mice were adapted to high-fat (HF) diet for 6-10 months and were submitted to three experimental treatments. First, the Y5 antagonist at a dose of 10 or 30 mg/kg was administered for 1 month to DIO C57BL/6 or Npy5r(-/-) mice. Second, the Y5 antagonist at 30 mg/kg was administered for 1.5 months to DIO C57BL/6 mice, and insulin sensitivity was evaluated using an insulin tolerance test. After a recovery period, nuclear magnetic resonance measurement was performed to evaluate body composition. Third, DIO mice were treated with the Y5 antagonist alone, or in combination with 10% food restriction, or with another anorectic agent, sibutramine at 10 mg/kg, for 1.5 months. Plasma glucose, insulin, and leptin levels, and adipose tissue weights were quantified. RESULTS: The spironolactone Y5 antagonist significantly reduced body weight in C57BL DIO mice, but not in Npy5r(-/-) DIO mice. The Y5 antagonist produced a fat-selective loss of body weight, and ameliorated obesity-associated insulin resistance in DIO mice. In addition, the Y5 antagonist combined with either food restriction or sibutramine tended to produce greater body weight loss, as compared with single treatment. DISCUSSION: These findings demonstrate that the Y5 receptor is an important mediator of energy homeostasis in rodents.


Assuntos
Fármacos Antiobesidade/farmacologia , Depressores do Apetite/farmacologia , Restrição Calórica , Ciclobutanos/farmacologia , Obesidade/tratamento farmacológico , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Compostos de Espiro/farmacologia , Espironolactona/farmacologia , Adiposidade , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Terapia Combinada , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Ingestão de Alimentos/efeitos dos fármacos , Insulina/sangue , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/dietoterapia , Obesidade/metabolismo , Obesidade/fisiopatologia , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Espironolactona/análogos & derivados , Fatores de Tempo
17.
J Pharmacol Exp Ther ; 321(3): 1013-22, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17327489

RESUMO

The cannabinoid-1 receptor (CB1R) has been implicated in the control of energy balance. To explore the pharmacological utility of CB1R inhibition for the treatment of obesity, we evaluated the efficacy of N-[(1S,2S)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-[[5-(trifluoromethyl)pyridin-2-yl]oxy]propanamide (MK-0364) and determined the relationship between efficacy and brain CB1R occupancy in rodents. MK-0364 was shown to be a highly potent CB1R inverse agonist that inhibited the binding and functional activity of various agonists with a binding K(i) of 0.13 nM for the human CB1R in vitro. MK-0364 dose-dependently inhibited food intake and weight gain, with an acute minimum effective dose of 1 mg/kg in diet-induced obese (DIO) rats. CB1R mechanism-based effect was demonstrated for MK-0364 by its lack of efficacy in CB1R-deficient mice. Chronic treatment of DIO rats with MK-0364 dose-dependently led to significant weight loss with a minimum effective dose of 0.3 mg/kg (p.o.), or a plasma C(max) of 87 nM. Weight loss was accompanied by the loss of fat mass. Partial occupancy (30-40%) of brain CB1R by MK-0364 was sufficient to reduce body weight. The magnitude of weight loss was correlated with brain CB1R occupancy. The partial receptor occupancy requirement for efficacy was also consistent with the reduced food intake of the heterozygous mice carrying one disrupted allele of CB1R gene compared with the wild-type mice. These studies demonstrated that MK-0364 is a highly potent and selective CB1R inverse agonist and that it is orally active in rodent models of obesity.


Assuntos
Amidas/farmacologia , Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Piridinas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Amidas/química , Amidas/metabolismo , Animais , Fármacos Antiobesidade/química , Fármacos Antiobesidade/metabolismo , Ligação Competitiva/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Células CHO , Colforsina/farmacologia , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Cicloexanóis/farmacologia , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Indóis/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Molecular , Obesidade/metabolismo , Obesidade/fisiopatologia , Piperidinas/metabolismo , Piridinas/química , Piridinas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/fisiologia , Transfecção
19.
Mol Pharmacol ; 71(2): 602-8, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17105869

RESUMO

Neuropeptide Y (NPY) is thought to have a significant role in the physiological control of energy homeostasis. We recently reported that an NPY Y5 antagonist inhibits body weight gain in diet-induced obese (DIO) mice, with a moderate reduction in food intake. To clarify the mechanism of the antiobesity effects of the Y5 antagonist, we conducted a pair-feeding study in DIO mice. The Y5 antagonist at 100 mg/kg produced a moderate feeding suppression leading to an 18% decrease in body weight, without altering body temperature. In contrast, the pair-fed group showed only a transient weight reduction and a reduced body temperature, thus indicating that the Y5 antagonist stimulates thermogenesis. The Y5 antagonist-treated mice showed an up-regulation of uncoupling protein mRNA in brown adipose tissue (BAT) and white adipose tissue (WAT), suggesting that both BAT and WAT contribute to energy expenditure. Thus, the Y5 antagonist induces its antiobesity effects by acting on both energy intake and expenditure.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Redução de Peso/efeitos dos fármacos , Tecido Adiposo , Animais , Temperatura Corporal , Dieta , Ingestão de Energia/efeitos dos fármacos , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Obesidade/tratamento farmacológico , Proteína Desacopladora 1 , Regulação para Cima/efeitos dos fármacos
20.
J Med Chem ; 49(26): 7584-7, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17181138

RESUMO

The discovery of novel acyclic amide cannabinoid-1 receptor inverse agonists is described. They are potent, selective, orally bioavailable, and active in rodent models of food intake and body weight reduction. A major focus of the optimization process was to increase in vivo efficacy and to reduce the potential for formation of reactive metabolites. These efforts led to the identification of compound 48 for development as a clinical candidate for the treatment of obesity.


Assuntos
Fármacos Antiobesidade/farmacologia , Canabinoides/farmacologia , Obesidade/tratamento farmacológico , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Animais , Fármacos Antiobesidade/síntese química , Fármacos Antiobesidade/química , Peso Corporal/efeitos dos fármacos , Canabinoides/síntese química , Canabinoides/química , AMP Cíclico/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Ratos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...