Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Front Immunol ; 9: 1546, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042761

RESUMO

Probiotics and probiotic-related nutritional interventions have been described to have beneficial effects on immune homeostasis and gut health. In previous studies, Lactobacillus rhamnosus GG (LGG) soluble mediators (LSM) have been demonstrated to exert beneficial effects in preclinical models of allergic sensitization, bacterial infection, and intestinal barrier function. In the context of allergic diseases, differentiation of dendritic cells (DCs) and their interactions with T cell populations are crucial for driving tolerogenic responses. In this study, we set out to evaluate whether these LSM can modulate DC maturation and have an impact on prompting protective and/or tolerogenic T cell responses. Monocytes were isolated from PBMC of healthy blood donors and cultured in the presence of GM-CSF, IL-4, and LSM or unconditioned bacterial culture medium control (UCM) during 6 days to induce DC differentiation. Subsequently, these DCs were matured in the presence of TNF-α for 1 day and analyzed for their phenotype and ability to induce autologous T cell activation and differentiation to model recall antigens. After 7 days of co-culture, T cells were analyzed for activation and differentiation by flow cytometry of intracellular cytokines (IFN-γ, IL-2, IL-10, and IL-17A), activation markers (CD25), and Foxp3+ expression. LSM did not alter DC numbers or maturation status. However, these DCs did show improved capacity to induce a T cell response as shown by increased IL-2 and IFN-γ producing T cell populations upon stimulation with recall antigens. These enhanced recall responses coincided with enhanced Foxp3+ expression that was not observed when T cells were cultured in the presence of UCM-treated DCs. By contrast, the number of activated T cells (determined by CD25 expression) was only slightly increased. In conclusion, this study reveals that LSM can influence adaptive immune responses as shown by the modulation of DC functionality. These mechanisms might contribute to previous observed effects in animal models in vivo. Altogether, these results suggest that LSM may provide an alternative to live probiotics in case life bacteria may not be used because of health conditions, although further clinical testing is needed.

2.
Vaccine ; 36(11): 1405-1413, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29409680

RESUMO

Most traditional vaccines are administered via the intramuscular route. Other routes of administration however, can induce equal or improved protective memory responses and might provide practical advantages such as needle-free immunization, dose sparing and induction of tissue-specific (mucosal) immunity. Here we explored the differences in immunological outcome after immunization with model antigens via two promising immunization routes (intradermal and intranasal) with or without the experimental adjuvant and TLR7/8-agonist R848. Because the adaptive immune response is largely determined by the local innate cells at the site of immunization, the effect of R848-adjuvation on local cellular recruitment, antigenic uptake by antigen-presenting cells and the initiation of the adaptive response were analyzed for the two routes of administration. We show a general immune-stimulating effect of R848 irrespective of the route of administration. This includes influx of neutrophils, macrophages and dendritic cells to the respective draining lymph nodes and an increase in antigen-positive antigen-presenting cells which leads for both intradermal and intranasal immunization to a mainly TH1 response. Furthermore, both intranasal and intradermal R848-adjuvated immunization induces a local shift in DC subsets; frequencies of CD11b+DC increase whereas CD103+DC decrease in relative abundance in the draining lymph node. In spite of these similarities, the outcome of immune responses differs for the respective immunization routes in both magnitude and cytokine profile. Via the intradermal route, the induced T-cell response is higher compared to that after intranasal immunization, which corresponds with the local higher uptake of antigen by antigen-presenting cells after intradermal immunization. Furthermore, R848-adjuvation enhances ex vivo IL-10 and IL-17 production after intranasal, but not intradermal, T-cell activation. Quite the opposite, intradermal immunization leads to a decrease in IL-10 production by the vaccine induced T-cells. This knowledge may lead to a more rational development of novel adjuvanted vaccines administered via non-traditional routes.


Assuntos
Adjuvantes Imunológicos , Imidazóis , Imunidade , Vacinação , Vacinas/imunologia , Administração Intranasal , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Vias de Administração de Medicamentos , Imunização , Injeções Intradérmicas , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinação/métodos , Vacinas/administração & dosagem
3.
Front Immunol ; 8: 1599, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209330

RESUMO

The fundamental problem of autoimmune diseases is the failure of the immune system to downregulate its own potentially dangerous cells, which leads to destruction of tissue expressing the relevant autoantigens. Current immunosuppressive therapies offer relief but fail to restore the basic condition of self-tolerance. They do not induce long-term physiological regulation resulting in medication-free disease remissions. Heat shock proteins (HSPs) have shown to possess the capacity of inducing lasting protective immune responses in models of experimental autoimmune diseases. Especially mycobacterial HSP60 and HSP70 were shown to induce disease inhibitory IL-10-producing regulatory T cells in many different models. This in itself may seem enigmatic, since based on earlier studies, HSPs were also coined sometimes as pro-inflammatory damage-associated molecular patterns. First clinical trials with HSPs in rheumatoid arthritis and type I diabetes have also indicated their potential to restore tolerance in autoimmune diseases. Data obtained from the models have suggested three aspects of HSP as being critical for this tolerance promoting potential: 1. evolutionary conservation, 2. most frequent cytosolic/nuclear MHC class II natural ligand source, and 3. upregulation under (inflammatory) stress. The combination of these three aspects, which are each relatively unique for HSP, may provide an explanation for the enigmatic immune tolerance promoting potential of HSP.

4.
PLoS One ; 12(6): e0179942, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28658271

RESUMO

Regulatory T cells (Treg) function in the prevention of excessive inflammation and maintenance of immunological homeostasis. However, these cells may also interfere with resolution of infections or with immune reactions following vaccination. Effects of Treg on vaccine responses are nowadays investigated, but the impact of vaccination on Treg homeostasis is still largely unknown. This may be a relevant safety aspect, since loss of tolerance through reduced Treg may trigger autoimmunity. In exploratory clinical trials, healthy adults were vaccinated with an influenza subunit vaccine plus or minus the adjuvant MF59®, an adjuvanted hepatitis B subunit vaccine or a live attenuated yellow fever vaccine. Frequencies and phenotypes of resting (rTreg) and activated (aTreg) subpopulations of circulating CD4+ Treg were determined and compared to placebo immunization. Vaccination with influenza vaccines did not result in significant changes in Treg frequencies and phenotypes. Vaccination with the hepatitis B vaccine led to slightly increased frequencies of both rTreg and aTreg subpopulations and a decrease in expression of functionality marker CD39 on aTreg. The live attenuated vaccine resulted in a decrease in rTreg frequency, and an increase in expression of activation marker CD25 on both subpopulations, possibly indicating a conversion from resting to migratory aTreg due to vaccine virus replication. To study the more local effects of vaccination on Treg in lymphoid organs, we immunized mice and analyzed the CD4+ Treg frequency and phenotype in draining lymph nodes and spleen. Vaccination resulted in a transient local decrease in Treg frequency in lymph nodes, followed by a systemic Treg increase in the spleen. Taken together, we showed that vaccination with vaccines with an already established safe profile have only minimal impact on frequencies and characteristics of Treg over time. These findings may serve as a bench-mark of inter-individual variation of Treg frequencies and phenotypes following vaccination.


Assuntos
Linfócitos T Reguladores/efeitos dos fármacos , Vacinas Virais/farmacologia , Adulto , Animais , Feminino , Vacinas contra Hepatite B/imunologia , Vacinas contra Hepatite B/farmacologia , Humanos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Contagem de Linfócitos , Masculino , Camundongos , Fragmentos de Peptídeos , Protrombina , Linfócitos T Reguladores/imunologia , Vacinas/imunologia , Vacinas/farmacologia , Vacinas Virais/imunologia , Vacina contra Febre Amarela/imunologia , Vacina contra Febre Amarela/farmacologia
5.
PLoS One ; 12(5): e0177365, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28489886

RESUMO

Autoimmune and other chronic inflammatory diseases (AID) are prevalent diseases which can severely impact the quality of life of those that suffer from the disease. In most cases, the etiology of these conditions have remained unclear. Immune responses that take place e.g. during natural infection or after vaccination are often linked with the development or exacerbation of AID. It is highly debated if vaccines induce or aggravate AID and in particular adjuvants are mentioned as potential cause. Since vaccines are given on a large scale to healthy individuals but also to elderly and immunocompromised individuals, more research is warranted. Non-specific induction of naïve or memory autoreactive T cells via bystander activation is one of the proposed mechanisms of how vaccination might be involved in AID. During bystander activation, T cells unrelated to the antigen presented can be activated without (strong) T cell receptor (TCR) ligation, but via signals derived from the ongoing response directed against the vaccine-antigen or adjuvant at hand. In this study we have set up a TCR transgenic T cell transfer mouse model by which we were able to measure local bystander activation of transferred and labeled CD4+ T cells. Intramuscular injection with the highly immunogenic Complete Freund's Adjuvant (CFA) led to local in vivo proliferation and activation of intravenously transferred CD4+ T cells in the iliac lymph node. This local bystander activation was also observed after CFA prime and Incomplete Freund's Adjuvant (IFA) boost injection. Furthermore, we showed that an antigen specific response is sufficient for the induction of a bystander activation response and the general, immune stimulating effect of CFA or IFA does not appear to increase this effect. In other words, no evidence was obtained that adjuvation of antigen specific responses is essential for bystander activation.


Assuntos
Adjuvantes Imunológicos , Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Adjuvante de Freund/imunologia , Inflamação/etiologia , Proteoglicanas/imunologia , Vacinas/imunologia , Adjuvantes Imunológicos/efeitos adversos , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos/efeitos adversos , Doenças Autoimunes/etiologia , Doenças Autoimunes/imunologia , Doença Crônica , Adjuvante de Freund/efeitos adversos , Humanos , Inflamação/imunologia , Ativação Linfocitária , Masculino , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Proteoglicanas/efeitos adversos , Vacinação/efeitos adversos , Vacinas/efeitos adversos
6.
Vaccine ; 35(12): 1622-1629, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28222998

RESUMO

Vaccines often contain adjuvants to strengthen the response to the vaccine antigen. However, their modes of action at the site of injection (SOI) are poorly understood. Therefore, we assessed the local effects of adjuvant on the innate immune system in mice. We investigated the safe, widely used adjuvants MF59 and aluminum hydroxide (alum), as well as trehalose-6,6'-dibehenate (TDB), Complete Freund's Adjuvant (CFA) and the Toll-Like-Receptor-ligands lipopolysaccharide (LPS) and Pam3CysSerLys4 (Pam3CSK4). We assessed muscle immune cell infiltration after adjuvant injection and observed 16h post immunization (hpi) an increased influx with CFA, MF59 and TDB, but not with alum, LPS or Pam3CSK4. An elevated influx with the latter three became visible only 72hpi. Contribution of granulocytes, macrophages and dendritic cells to the influx differed per adjuvant and in time. Adjuvants generally induced a local pro-inflammatory micro-milieu that was transient except for CFA and TDB. The gene expression of CXCL-1, CCL-2 and CCL-5, involved in recruitment of immune cells, varied per adjuvant and corresponded grossly with the observed influx of granulocytes and monocytes/macrophages. Muscles injected with CFA or MF59 (when co-injected with peptide) resulted in APC ex vivo capable to induce proliferation of peptide-specific T-cells. By adding in vitro an excess of peptide to the APC/T cell co-cultures, we observed an adjuvant-enhanced co-stimulation or antigen presentation by APC after CFA- but not MF59-injection. After TDB-injection this effect was observed only at 72hpi, but not 24hpi. Thus the cellular influx profile and the local cytokine and chemokine micro-milieu in the muscle were strongly influenced by the type of adjuvant. Additionally, the capacity of muscle APC to load and present antigen was affected by the adjuvant. These findings may assist the development of novel adjuvanted vaccines in a more rational manner.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Células Apresentadoras de Antígenos/imunologia , Imunidade Inata , Animais , Feminino , Injeções Intramusculares , Camundongos Endogâmicos BALB C , Músculos/imunologia
7.
Front Immunol ; 7: 90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014269

RESUMO

Antigen-specific regulatory T cells (Tregs) directed at self-antigens are difficult to study since suitable specific tools to isolate and characterize these cells are lacking. A T cell receptor (TCR)-transgenic mouse would generate possibilities to study such -antigen-specific T cells. As was shown previously, immunization with the mycobacterial heat shock protein (Hsp) 70-derived peptide B29 and its mouse homologs mB29a and mB29b induced anti-inflammatory responses. Furthermore, B29 induced antigen--specific Tregs in vivo. To study mB29b-specific Tregs, we isolated the TCR from T cell hybridomas generated against mB29b and produced a TCR transgenic mouse that expresses a MHC-class II restricted mB29b-specific TCR. These TCR transgenic CD4(+) T cells were found to cross-react with the B29 epitope as identified with peptide-induced proliferation and IL-2 production. Thus, we have successfully generated a novel mouse model with antigen-specific CD4(+) T cells that recognize self and bacterial Hsp 70-derived peptides. With this novel mouse model, it will be possible to study primary antigen-specific T cells with specificity for a regulatory Hsp70 T cell epitope. This will enable the isolation and characterization CD4(+)CD25(+) Tregs with a proven specificity. This will provide useful knowledge of the induction, activation, and mode of action of Hsp70-specific Tregs, for instance, during experimental arthritis.

8.
Arthritis Rheumatol ; 68(3): 639-47, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26414917

RESUMO

OBJECTIVE: We previously showed that mycobacterial Hsp70-derived peptide B29 induced B29-specific Treg cells that suppressed experimental arthritis in mice via cross-recognition of their mammalian Hsp70 homologs. The aim of the current study was to characterize B29 binding and specific CD4+ T cell responses in the context of human major histocompatibility complex (MHC) molecules. METHODS: Competitive binding assays were performed to examine binding of peptide B29 and its mammalian homologs to HLA molecules. The effect of B29 immunization in HLA-DQ8-transgenic mice with proteoglycan-induced arthritis was assessed, followed by ex vivo restimulation with B29 to examine the T cell response. Human peripheral blood mononuclear cells were used to investigate the presence of B29-specific T cells with immunoregulatory potential. RESULTS: The binding affinity of the B29 peptide was high to moderate for multiple HLA-DR and HLA-DQ molecules, including those highly associated with rheumatoid arthritis. This binding was considered to be functional, because B29 immunization resulted in the suppression of arthritis and T cell responses in HLA-DQ8-transgenic mice. In humans, we demonstrated the presence and expansion of B29-specific CD4+ T cells, which were cross-reactive with the mammalian homologs. Using HLA-DR4+ tetramers specific for B29 or the mammalian homolog mB29b, we showed expansion of cross-reactive T cells, especially the human FoxP3+ CD4+CD25+ T cell population, after in vitro stimulation with B29. CONCLUSION: These results demonstrated a conserved fine specificity and functionality of B29-induced Treg cell responses in the context of the human MHC. Based on these findings, a path for translation of the experimental findings for B29 into a clinical immunomodulatory therapeutic approach is within reach.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Antígenos HLA-DQ/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T/imunologia , Animais , Ligação Competitiva , Separação Celular , Células Cultivadas , Reações Cruzadas , Encefalinas/imunologia , Feminino , Fatores de Transcrição Forkhead/imunologia , Humanos , Técnicas In Vitro , Integrina beta1/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Precursores de Proteínas/imunologia
9.
PLoS One ; 10(6): e0128373, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26107957

RESUMO

Therapeutic peptides that target antigen-specific regulatory T cells (Tregs) can suppress experimental autoimmune diseases. The heat shock protein (Hsp) 70, with its expression elevated in inflamed tissue, is a suitable candidate antigen because administration of both bacterial and mouse Hsp70 peptides has been shown to induce strong immune responses and to reduce inflammation via the activation or induction of Hsp specific Tregs. Although two subsets of Tregs exist, little is known about which subset of Tregs are activated by Hsp70 epitopes. Therefore, we set out to determine whether natural nTregs (derived from the thymus), or induced iTregs (formed in the periphery from CD4+CD25- naïve T cells) were targeted after Hsp70-peptide immunization. We immunized mice with the previously identified Hsp70 T cell epitope B29 and investigated the formation of functional iTregs by using an in vitro suppression assay and adoptive transfer therapy in mice with experimental arthritis. To study the in vivo induction of Tregs after peptide immunization, we depleted CD25+ cells prior to immunization, allowing the in vivo formation of Tregs from CD4+CD25- precursors. This approach allowed us to study in vivo B29-induced Tregs and to compare these cells with Tregs from non-depleted immunized mice. Our results show that using this approach, immunization induced CD4+CD25+ T cells in the periphery, and that these cells were suppressive in vitro. Additionally, adoptive transfer of B29-specific iTregs suppressed disease in a mouse model of arthritis. This study shows that immunization of mice with Hsp70 epitope B29 induces functionally suppressive iTregs from CD4+CD25- T cells.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/mortalidade , Doenças Autoimunes/patologia , Epitopos de Linfócito T/administração & dosagem , Epitopos de Linfócito T/imunologia , Proteínas de Choque Térmico HSP70/administração & dosagem , Inflamação/imunologia , Inflamação/patologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Peptídeos/administração & dosagem , Peptídeos/imunologia , Linfócitos T Reguladores/efeitos dos fármacos
10.
J Immunol ; 194(10): 4804-13, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862815

RESUMO

Previous studies in mouse models of autoimmune diabetes and encephalomyelitis have indicated that the selective delivery of self-antigen to the endocytic receptor DEC205 on steady-state dendritic cells (DCs) may represent a suitable approach to induce Ag-specific immune tolerance. In this study, we aimed to examine whether DEC205(+) DC targeting of a single immunodominant peptide derived from human cartilage proteoglycan (PG) can promote immune tolerance in PG-induced arthritis (PGIA). Besides disease induction by immunization with whole PG protein with a high degree of antigenic complexity, PGIA substantially differs from previously studied autoimmune models not only in the target tissue of autoimmune destruction but also in the nature of pathogenic immune effector cells. Our results show that DEC205(+) DC targeting of the PG peptide 70-84 is sufficient to efficiently protect against PGIA development. Complementary mechanistic studies support a model in which DEC205(+) DC targeting leads to insufficient germinal center B cell support by PG-specific follicular helper T cells. Consequently, impaired germinal center formation results in lower Ab titers, severely compromising the development of PGIA. Overall, this study further corroborates the potential of prospective tolerogenic DEC205(+) DC vaccination to interfere with autoimmune diseases, such as rheumatoid arthritis.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Vacinas/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos
11.
Cell Stress Chaperones ; 19(4): 569-78, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24425585

RESUMO

Self-reactive T cells have shown to have a potential role as regulators of the immune system preventing or even suppressing autoimmunity. One of the most abundant proteins that can be eluted from human HLA molecules is heat shock protein 70 (HSP70). The aims of the current study are to identify HSP70 epitopes based on published HLA elution studies and to investigate whether T cells from healthy individuals may respond to such self-epitopes. A literature search and subsequent in silico binding prediction based on theoretical MHC binding motifs resulted in the identification of seven HSP70 epitopes. PBMCs of healthy controls proliferated after incubation with two of the seven peptides (H167 and H290). Furthermore H161, H290, and H443 induced CD69 expression or production of cytokines IFNγ or TNFα in healthy controls. The identification of these naturally presented epitopes and the response they elicit in the normal immune system make them potential candidates to study during inflammatory conditions as well as in autoimmune diseases.


Assuntos
Proteínas de Choque Térmico HSP70/imunologia , Ativação Linfocitária , Linfócitos T/imunologia , Adulto , Sequência de Aminoácidos , Autoimunidade , Linhagem Celular , Proliferação de Células , Células Cultivadas , Citocinas/imunologia , Epitopos de Linfócito T , Feminino , Genes MHC da Classe II , Proteínas de Choque Térmico HSP70/química , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Linfócitos T/citologia , Linfócitos T/metabolismo , Adulto Jovem
12.
Toxicol Sci ; 138(1): 69-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24284788

RESUMO

Exposure to environmental toxicants can alter a range of cellular functions involved in the immune response. Increased expression of the stress protein metallothionein 1 (MT1) is one example hereof. Previously, it has been reported that MT1 has several immunosuppressive properties. Furthermore, we earlier showed that functionally tolerogenic dendritic cells (DCs) expressed increased mRNA levels of MT1. Here, we demonstrate that dexamethasone-treated murine DCs are functionally tolerogenic and produce MT1. However, these DCs do not actively transport MT1 to the cell membrane and their regulatory function does not depend on MT1. Alternatively, ZnCl2-treated murine DCs transport MT1 to the cell surface are tolerogenic and promote the expansion of T cells with a regulatory phenotype. Moreover, the membrane-bound MT1 was shown to be essential for ZnCl2-treated DCs to exert their regulatory function. On the basis of this, MT1 can be used as a new marker for functionally tolerogenic DCs. Additionally, we have found a new mechanism for tolerogenic DCs to exert their immune regulatory function.


Assuntos
Membrana Celular/metabolismo , Células Dendríticas/imunologia , Tolerância Imunológica , Imunossupressores/farmacologia , Metalotioneína/biossíntese , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Cloretos/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Dexametasona/farmacologia , Feminino , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/imunologia , Tolerância Imunológica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Transporte Proteico , RNA Mensageiro/biossíntese , Linfócitos T Reguladores/efeitos dos fármacos , Compostos de Zinco/farmacologia
13.
Int Immunopharmacol ; 17(4): 1075-83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24177275

RESUMO

Rheumatoid arthritis (RA) is a chronic T-cell mediated autoimmune disease that affects primarily the joints. The induction of immune tolerance through antigen-specific therapies for the blockade of pathogenic CD4+ T cells constitutes a current focus of research. In this focus it is attempted to simultaneously activate multiple regulatory mechanisms, such as: apoptosis and regulatory T cells (Tregs). APL-1 is an altered peptide ligand derived from a novel CD4+ T-cell epitope of human heat-shock protein of 60kDa, an autoantigen involved in the pathogenesis of RA. Previously, we have reported that APL-1 induces CD4+ CD25(high)Foxp3+ Tregs in several systems. Here, we investigated the ability of APL-1 in inducing apoptosis in PBMCs from RA patients, who were classified as active or inactive according to their DAS28 score. APL-1 decreased the viability of PBMCs from active but not from inactive patients. DNA fragmentation assays and typical morphological features clearly demonstrated that APL-1 induced apoptosis in these cells. Activated CD4+ CD25+ T cells but not resting CD4+ CD25- T cells were identified as targets of APL-1. Furthermore, CD4+ T-cell responses to APL-1 were found to be dependent on antigen presentation via the HLA-DR molecule. Thus, APL-1 is a regulatory CD4+ T cell epitope which might modulate inflammatory immune responses in PBMCs from RA patients by inducing CD4+ CD25(high)Foxp3+ Tregs and apoptosis in activated CD4+ T cells. These results support further investigation of this candidate drug for the treatment of RA.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Reumatoide/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Chaperonina 60/farmacologia , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Adulto , Idoso , Apoptose/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chaperonina 60/imunologia , Fragmentação do DNA/efeitos dos fármacos , Feminino , Humanos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/ultraestrutura , Ligantes , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/imunologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
14.
Front Immunol ; 4: 245, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23970886

RESUMO

Many existing therapies in autoimmune diseases are based on systemic suppression of inflammation and the observed side effects of these therapies illustrate the pressing need for more specific interventions. Regulatory T-cells (Treg) are pivotal controllers of (auto-aggressive) immune responses and inflammation, and decreased Treg numbers and/or functioning have been associated with autoimmune disease. Therefore, Treg became frequently studied targets for more specific immunotherapy. Especially antigen-specific targeting of Treg would enable local and tailor made interventions, while obviating the negative side effect of general immuno-suppression. Self-antigens that participate in inflammation, irrespective of the etiology of the different autoimmune diseases, are held to be candidate antigens for antigen-specific interventions. Rather than tolerance induction to disease inciting self-antigens, which are frequently unknown, general self-antigens expressed at sites of inflammation would allow targeting of disease independent, but inflammatory-site specific, regulatory mechanisms. Preferably, such self-antigens should be abundantly expressed and up-regulated at the inflammatory-site. In this perspective heat shock proteins (Hsp) have several characteristics that make them highly attractive targets for antigen-specific Treg inducing therapy. The development of an antigen-specific Treg inducing vaccine is a major novel goal in the field of immunotherapy in autoimmune diseases. However, progress is hampered not only by the lack of effective antigens, but also by the fact that other factors such as dose, route, and the presence or absence of an adjuvant, turned out to be critical unknowns, with respect to the effective induction of Treg. In addition, the use of a Treg inducing adjuvant might be required to achieve an effective regulatory response, in the case of ongoing inflammation. Future goals in clinical trials will be the optimization of natural Treg expansion (or the induction of adaptive Treg) without loss of their suppressive function or the concomitant induction of non-regulatory T-cells. Here, we will discuss the potential use of protein/peptide-based vaccines combined with Treg inducing adjuvants for the development of therapeutic vaccines against chronic inflammatory conditions.

15.
Int J Hyperthermia ; 29(5): 448-54, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863094

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterised by excessive immune responses resulting in inflammation of the joints. Although current therapies can be successful in dampening inflammation, a long-lived state of tolerance is seldom achieved. Therefore, novel therapies are needed that restore and maintain tolerance in patients with RA. Targeting regulatory T cells (Tregs) is a successful strategy to achieve tolerance, as was shown in studies performed in animal models and in human clinical trials. The antigen-specificity of Tregs is crucial for their effectiveness and allows for very specific targeting of these cells. However, which antigen is suitable for autoimmune diseases such as RA, for which the autoantigens are largely unknown? Heat shock proteins (HSPs) are ubiquitously expressed and can be up-regulated during inflammation. Additionally, HSPs, or HSP-derived peptides are immunogenic and can be recognised by a variety of immune cells, including Tregs. Therefore, this review highlights the potential of HSP-specific Tregs to control inflammatory immune responses. Targeting HSP-specific Tregs in RA can be achieved via the administration of HSPs (derived peptides), thereby controlling inflammatory responses. This makes HSPs attractive candidates for therapeutic intervention in chronic autoimmune diseases, with the ultimate goal of inducing long-lasting tolerance.


Assuntos
Artrite Reumatoide/terapia , Proteínas de Choque Térmico/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Artrite Reumatoide/imunologia , Humanos , Tolerância Imunológica , Peptídeos/uso terapêutico
17.
FEBS Lett ; 587(13): 1951-8, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23707418

RESUMO

Since the initial discovery of the protective role of heat shock protein (HSP) 60 in arthritis, T cell recognition of endogenous HSP was found to be one of the possible underlying mechanisms. Recently we have uncovered potent disease-suppressive Tregs (anti-inflammatory immunosuppressive T cells) recognizing HSP70 self-antigens, and enabling selective targeting of such Tregs to inflamed tissues. HSP70 is a major contributor to the major histocompatibility complex (MHC) Class II ligandome and we have shown that a conserved HSP70-epitope (B29) is abundantly present in murine MHC Class II. Upon transfer, B29-induced CD4+CD25+Foxp3+T cells suppressed established proteoglycan-induced arthritis (PGIA) in mice. These self-antigen specific Tregs were activated in vivo and as little as 4.000 cells sufficed to fully inhibit arthritis. Furthermore, in vivo depletion of transferred Tregs abrogated disease suppression. Given that B29 can be presented by most human MHC class II molecules and that B29 inhibited arthritis in HLA-DQ8 (human MHC) transgenic mice, we feel that therapeutic vaccination with selected HSP peptides can be an effective route for induction of anti-inflammatory Tregs as a novel intervention in chronic inflammatory diseases.


Assuntos
Proteínas de Choque Térmico/imunologia , Inflamação/imunologia , Linfócitos T Reguladores/imunologia , Sequência de Aminoácidos , Animais , Artrite/imunologia , Artrite/metabolismo , Epitopos/imunologia , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Dados de Sequência Molecular , Linfócitos T Reguladores/metabolismo
18.
Cell Stress Chaperones ; 18(5): 607-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23463150

RESUMO

Heat shock proteins (HSP) are highly conserved across eukaryotic and prokaryotic species. These proteins play a role in response to cellular stressors, protecting cells from damage and facilitating recovery. In tumor cells, HSPs can have cytoprotective effects and interfere with apoptotic cascades. This study was performed to assess the prognostic and predictive values of the gene expression of HSP family members in canine osteosarcoma (OS) and their potential for targeted therapy. Gene expressions for HSP were assessed using quantitative PCR (qPCR) on 58 snap-frozen primary canine OS tumors and related to clinic-pathological parameters. A significant increased expression of HSP60 was found in relation to shorter overall survival and an osteoblastic phenotype. Therefore, the function of HSP60 was investigated in more detail. Immunohistochemical analysis revealed heterogeneous staining for HSP60 in tumors. The highest immunoreactivity was found in tumors of short surviving dogs. Next HSP expression was shown in a variety of canine and human OS cell lines by qPCR and Western blot. In two highly metastatic cell lines HSP60 expression was silenced using siRNA resulting in decreased cell proliferation and induction of apoptosis in both cell lines. It is concluded that overexpression of HSP60 is associated with a poor prognosis of OS and should be evaluated as a new target for therapy.


Assuntos
Chaperonina 60/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Chaperonina 60/antagonistas & inibidores , Chaperonina 60/genética , Cães , Feminino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Imuno-Histoquímica , Masculino , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Interferência de RNA , RNA Mensageiro , RNA Interferente Pequeno/metabolismo
19.
PLoS One ; 7(9): e46336, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23050016

RESUMO

Tolerogenic dendritic cells (DCs) can induce regulatory T cells and dampen pathogenic T cell responses. Therefore, they are possible therapeutic targets in autoimmune diseases. In this study we investigated whether mouse tolerogenic DCs are induced by the phytonutrient carvacrol, a molecule with known anti-inflammatory properties, in combination with a physiological stress. We show that treatment of DCs with carvacrol and thermal stress led to the mRNA expression of both pro- and anti-inflammatory mediators. Interestingly, treated DCs with this mixed gene expression profile had a reduced ability to activate pro-inflammatory T cells. Furthermore, these DCs increased the proportion of FoxP3(+) regulatory T cells. In vivo, prophylactic injection of carvacrol-thermal stress treated DCs pulsed with the disease inducing antigen was able to suppress disease in a mouse model of arthritis. These findings suggest that treatment of mouse bone marrow derived DCs with carvacrol and thermal stress induce a functionally tolerogenic DC that can suppress autoimmune arthritis. Herewith carvacrol seems to offer novel opportunities for the development of a dietary based intervention in chronic inflammatory diseases.


Assuntos
Artrite Experimental/terapia , Doenças Autoimunes/terapia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/fisiologia , Monoterpenos/farmacologia , Animais , Artrite Experimental/imunologia , Doenças Autoimunes/imunologia , Cimenos , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Temperatura
20.
J Autoimmun ; 39(4): 441-50, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22901435

RESUMO

Atherosclerosis is a multifactorial chronic inflammatory disease characterized by the presence of T-cells, macrophages, and dendritic cells in the arterial intima. Classical risk factors lead to over-expression of stress proteins, especially heat shock protein 60 (HSP60). HSP60 on the surface of arterial endothelial cells (ECs) then becomes a target for pre-existing adaptive anti-HSP60 immunity resulting in infiltration of the intima by mononuclear cells. In the present study, T-cells derived from early, clinically still inapparent human atherosclerotic lesions were analyzed phenotypically and for their reactivity against HSP60 and HSP60-derived peptides. HSP60 was detected in ECs and CD40- and HLA Class II-positive cells within the intima. Effector memory CD4(+) T-cells producing high amounts of interferon-γ and low levels of interleukin-4 were the dominant subpopulation. T-cells derived from late lesions displayed a more restricted T-cell receptor repertoire to HSP60-derived peptides than those isolated from early lesions. Increased levels of soluble HSP60 and circulating anti-human HSP60 autoantibodies were found in donors with late but not early lesions. This is the first functional study of T-cells derived from early human atherosclerotic lesions that supports the previously proposed concept that HSP60-reactive T-cells initiate atherosclerosis by recognition of atherogenic HSP60 epitopes.


Assuntos
Aterosclerose/imunologia , Autoanticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Chaperonina 60/imunologia , Células Endoteliais/imunologia , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Autoanticorpos/sangue , Autoanticorpos/genética , Autopsia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Antígenos CD40/genética , Antígenos CD40/imunologia , Chaperonina 60/sangue , Chaperonina 60/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Memória Imunológica , Interferon gama/genética , Interferon gama/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/genética , Peptídeos/imunologia , Transdução de Sinais , Fatores de Tempo , Túnica Íntima/imunologia , Túnica Íntima/metabolismo , Túnica Íntima/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...