Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 11: 366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362912

RESUMO

For two centuries, Jersey cattle were exported globally, adapting to varying climates and production systems, yet the founding population remained genetically isolated on the Island of Jersey. The Island of Jersey formally allowed the importation of pure Jersey cattle in 2008. This study characterized the genetic variation of 49 popular bulls from the Island of Jersey born from 1964 to 2004 and compared them to 47 non-Island Jersey bulls and cows, primarily from the United States In addition, 21 Guernsey cattle derived from the Island of Guernsey and 71 Holstein cattle served as reference populations for genetic comparison. Cattle were genotyped on the Illumina BovineHD Beadchip producing 777,962 SNPs spanning the genome. Principal component analysis revealed population stratification within breed reflective of individual animal's continental origin. When compared to Holstein and Guernsey, all Jersey clustered together by breed. The Jersey breed demonstrated increased inbreeding in comparison to Holstein or Guernsey with slightly higher estimates of inbreeding coefficients and identity-by-descent. The Island and United States Jersey have relatively similar, yet statistically different inbreeding estimates despite vastly different population sizes and gene flow. Signatures of selection within Island Jersey were identified using genome-wide homozygosity association and marker-based FST that provided population informative single-nucleotide polymorphism (SNPs). Biological significance of the homozygosity association results identified multiple genes on chromosomes 5, 24, and 27, involved in immune function and cellular processes. Overall, genomic variation was identified between the Island and non-Island Jersey cattle producing population informative SNPs and differing runs of homozygosity (ROH) over immune regulation and metabolic genes. Results on inbreeding measures and ROH may reflect varying effective population size or differential selection with grazing systems promoting natural selection for traits such as parasite resistance, whereas confinement systems demonstrate a more intensive artificial selection. More broadly, differences in breed formation, particularly between the two Channel Island breeds, likely contributed to the variation in ROH and inbreeding. This research provides a reference for the Jersey breed based on the genetic foundation of the Island cattle as compared to the intensively selected United States cattle, and identifies regions of the genome for future investigation of immune regulation and metabolic processes.

2.
BMC Genomics ; 20(1): 128, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744549

RESUMO

BACKGROUND: The availability of a unique unselected Holstein line since 1964 provided a direct comparison between selected and unselected Holstein genomes whereas large Holstein samples provided unprecedented statistical power for identifying high-confidence SNP effects. Utilizing these unique resources, we aimed to identify genome changes affected by selection since 1964. RESULTS: Direct comparison of genome-wide SNP markers between a Holstein line unselected since 1964 and contemporary Holsteins showed that the 40 years of artificial selection since 1964 resulted in genome landscape changes. Among the regions affected by selection, the regions containing 198 genes with fertility functions had a larger negative correlation than that of all SNPs between the SNP effects on milk yield and daughter pregnancy rate. These results supported the hypothesis that hitchhiking of genetic selection for milk production by negative effects of fertility genes contributed to the unintended declines in fertility since 1964. The genome regions subjected to selection also contained 67 immunity genes, the bovine MHC region of Chr23 with significantly decreased heterozygosity in contemporary Holsteins, and large gene clusters including T-cell receptor and immunoglobulin genes. CONCLUSIONS: This study for the first time provided direct evidence that genetic selection for milk production affected fertility and immunity genes and that the hitchhiking of genetic selection for milk production by negative fertility effects contributed to the fertility declines since 1964, and identified a large number of candidate fertility and immunity genes affected by selection. The results provided novel understanding about genome changes due to artificial selection and their impact on fertility and immunity genes and could facilitate developing genetic methods to reverse the declines in fertility and immunity in Holstein cattle.


Assuntos
Cruzamento , Bovinos/genética , Genômica , Animais , Bovinos/imunologia , Bovinos/metabolismo , Diacilglicerol O-Aciltransferase/genética , Fertilidade/genética , Frequência do Gene , Haplótipos , Humanos , Imunidade/genética , Leite/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Tempo
3.
Genet Sel Evol ; 47: 31, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25928250

RESUMO

BACKGROUND: Nelore and Gir are the two most important indicine cattle breeds for production of beef and milk in Brazil. Historical records state that these breeds were introduced in Brazil from the Indian subcontinent, crossed to local taurine cattle in order to quickly increase the population size, and then backcrossed to the original breeds to recover indicine adaptive and productive traits. Previous investigations based on sparse DNA markers detected taurine admixture in these breeds. High-density genome-wide analyses can provide high-resolution information on the genetic composition of current Nelore and Gir populations, estimate more precisely the levels and nature of taurine introgression, and shed light on their history and the strategies that were used to expand these breeds. RESULTS: We used the high-density Illumina BovineHD BeadChip with more than 777 K single nucleotide polymorphisms (SNPs) that were reduced to 697 115 after quality control filtering to investigate the structure of Nelore and Gir populations and seven other worldwide populations for comparison. Multidimensional scaling and model-based ancestry estimation clearly separated the indicine, European taurine and African taurine ancestries. The average level of taurine introgression in the autosomal genome of Nelore and Gir breeds was less than 1% but was 9% for the Brahman breed. Analyses based on the mitochondrial SNPs present in the Illumina BovineHD BeadChip did not clearly differentiate taurine and indicine haplotype groupings. CONCLUSIONS: The low level of taurine ancestry observed for both Nelore and Gir breeds confirms the historical records of crossbreeding and supports a strong directional selection against taurine haplotypes via backcrossing. Random sampling in production herds across the country and subsequent genotyping would be useful for a more complete view of the admixture levels in the commercial Nelore and Gir populations.


Assuntos
Bovinos/genética , Animais , Brasil , Cruzamento , Genótipo , Haplótipos , Mitocôndrias/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...