Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(52): 27095-27101, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34610202

RESUMO

Water splitting is an important source of hydrogen, a promising future carrier for clean and renewable energy. A detailed understanding of the mechanisms of water splitting, catalyzed by supported metal atoms or nanoparticles, is essential to improve the design of efficient catalysts. Here, we report an infrared spectroscopic study of such a water splitting process, assisted by a C60 supported vanadium atom, C60 V+ +H2 O→C60 VO+ +H2 . We probe both the entrance channel complex C60 V+ (H2 O) and the end product C60 VO+ , and observe the formation of H2 as a result from resonant infrared absorption. Density functional theory calculations exploring the detailed reaction pathway reveal that a quintet-to-triplet spin crossing facilitates the water splitting reaction by C60 -supported V+ , whereas this reaction is kinetically hindered on the isolated V+ ion by a high energy barrier. The C60 support has an important role in lowering the reaction barrier with more than 70 kJ mol-1 due to a large orbital overlap of one water hydrogen atom with one carbon atom of the C60 support. This fundamental insight in the water splitting reaction by a C60 -supported single vanadium atom showcases the importance of supports in single atom catalysts by modifying the reaction potential energy surface.

2.
Chem Commun (Camb) ; 57(75): 9518-9521, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34486620

RESUMO

The NbAl8H8+ cluster was formed in a molecular beam and characterized by mass spectrometry and infrared spectroscopy. Density functional theory calculations show the lowest-energy isomer is a high symmetry singlet with the Nb atom placed at the center of a distorted hexagonal Al ring and coordinated by two AlH moieties, therefore exhibiting octacoordination. The unprecedented high-symmetric geometry is attributed to the 20 valence electrons; the central Nb atom adheres to the 18-electron rule and two additional delocalized electrons stabilize the hexagonal ring.

3.
J Chem Phys ; 154(5): 054312, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33557561

RESUMO

The interaction of argon with doubly transition metal doped aluminum clusters, AlnTM2 + (n = 1-18, TM = V, Nb, Co, Rh), is studied experimentally in the gas phase via mass spectrometry. Density functional theory calculations on selected sizes are used to understand the argon affinity of the clusters, which differ depending on the transition metal dopant. The analysis is focused on two pairs of consecutive sizes: Al6,7V2 + and Al4,5Rh2 +, the largest of each pair showing a low affinity toward Ar. Another remarkable observation is a pronounced drop in reactivity at n = 14, independent of the dopant element. Analysis of the cluster orbitals shows that this feature is not a consequence of cage formation but is electronic in nature. The mass spectra demonstrate a high similarity between the size-dependent reactivity of the clusters with Ar and H2. Orbital interactions provide an intuitive link between the two and further establish the importance of precursor states in the reactions of the clusters with hydrogen.

4.
RSC Adv ; 11(47): 29186-29195, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35492069

RESUMO

The catalytic activity of metal clusters can be easily tuned by their size, charge state, or the introduction of dopant atoms. Here, the dopant-, charge- and size-dependent propene adsorption on gold (Au n +) and yttrium doped gold (Au n-1Y+) clusters (n = 4-20) was investigated using combined gas-phase reaction studies and density functional theory computations. The increased charge transfer between the cluster and propene in the cationic clusters considerably enhances the propene binding on both pure and yttrium-doped species, compared to their neutral cluster counterparts, while yttrium-doping lowers the propene binding strength in a size-dependent way compared to the pure gold clusters. Chemical bonding and energy decomposition analysis indicate that there is no covalent bond between the cluster and propene. The preferred propene binding site on a cluster is indicated by the large lobes of its LUMO, together with the low coordination number of the adsorption site. In small yttrium-doped gold clusters propene can not only bind to the electron-deficient yttrium atom, but also to the partially positively-charged gold atoms. Therefore, by controlling the charge of the clusters, as well as by introducing yttrium dopants, the propene binding strength can be tuned, opening the route for new catalytic applications.

5.
Chemphyschem ; 21(10): 1012-1018, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32233111

RESUMO

The adsorption of molecular deuterium (D2 ) onto charged cobalt-fullerene-complexes Con C60 + (n=1-8) is measured experimentally in a few-collision reaction cell. The reactivity is strongly size-dependent, hinting at clustering of the transition metal atoms on the fullerenes. Formation and desorption rate constants are obtained from the pressure-dependent deuterogenation curves. DFT calculations indeed find that this transition metal clustering is energetically more favorable than decorating the fullerene. For n=1, D2 is predicted to bind molecularly and for n=2 dissociative and molecular configurations are quasi-isoenergetic. For n=3-8, dissociation of D2 is thermodynamically preferred. However, reaching the ground state configuration with dissociated deuterium on the timescale of the experiment may be hindered by dissociation barriers.

6.
Chemistry ; 25(69): 15795-15804, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31696987

RESUMO

The dopant and size-dependent propene adsorption on neutral gold (Aun ) and yttrium-doped gold (Aun-1 Y) clusters in the n=5-15 size range are investigated, combining mass spectrometry and gas phase reactions in a low-pressure collision cell and density functional theory calculations. The adsorption energies, extracted from the experimental data using an RRKM analysis, show a similar size dependence as the quantum chemical results and are in the range of ≈0.6-1.2 eV. Yttrium doping significantly alters the propene adsorption energies for n=5, 12 and 13. Chemical bonding and energy decomposition analysis showed that there is no covalent bond between the cluster and propene, and that charge transfer and other non-covalent interactions are dominant. The natural charges, Wiberg bond indices, and the importance of charge transfer all support an electron donation/back-donation mechanism for the adsorption. Yttrium plays a significant role not only in the propene binding energy, but also in the chemical bonding in the cluster-propene adduct. Propene preferentially binds to yttrium in small clusters (n<10), and to a gold atom at larger sizes. Besides charge transfer, relaxation also plays an important role, illustrating the non-local effect of the yttrium dopant. It is shown that the frontier molecular orbitals of the clusters determine the chemical bonding, in line with the molecular-like electronic structure of metal clusters.

7.
Nanoscale ; 11(34): 16130-16141, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31432842

RESUMO

The introduction of dopant atoms into metal nanoparticles is an effective way to control the interaction with adsorbate molecules and is important in many catalytic processes. In this work, experimental and theoretical evidence of the influence of Pd doping on the bonding between small cationic AuN+ clusters and CO is presented. The CO adsorption is studied by combining low-pressure collision cell reactivity and infrared multiple photon dissociation spectroscopy experiments with density functional theory calculations. Measured dissociation rates of cluster-CO complexes (N ≤ 21) allow the estimation of cluster-CO binding energies, showing that Pd doping increases the CO adsorption energy to an extent that is size-dependent. These trends are reproduced by theoretical calculations up to N = 13. In agreement with theory, measurements of the C-O vibrational frequency suggest that for the doped PdAuN-1+ (N = 3-5, 11) clusters, CO adsorbs on an Au atom, while for N = 6-10 and N = 12-14, CO interacts directly with the Pd dopant. A pronounced red-shifting of the C-O vibrational frequency is observed when CO interacts directly with the Pd dopant, indicating a significant back-donation of electron charge from Pd to CO. In contrast, the blue-shifted frequencies, observed when CO interacts with an Au atom, indicate that σ-donation dominates the Au-CO interaction. Studying such systems at the sub-nanometre scale enables a fundamental comprehension of the interactions between adsorbates, dopants and the host (Au) species at the atomic level.

8.
Acc Chem Res ; 51(12): 3174-3182, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30475581

RESUMO

The reactivity of small metallic clusters, nanoparticles composed of a countable number of atoms (typically up to ∼100 atoms), has attracted much attention due to the fascinating properties these objects possess toward a variety of molecules. Cluster reactivity often is significantly different from the homologous bulk, with gold as prototypical example. Bulk gold is the noblest of all metals, whereas small gold clusters react with carbon monoxide, molecular oxygen, and hydrocarbons, among others. Furthermore, cluster reactivity is strongly size and composition dependent, allowing a wide range of tuning possibilities. The study of cluster reactivity usually follows two routes of investigation. In the first, research aims for fundamental understanding of mechanisms, mainly driven by curiosity. One consequence of the inherent small size of a cluster is that atoms can arrange themselves very differently from the crystallographic structure of the homologous bulk. In addition, quantum confinement effects dominate the electronic structure of a cluster with atom-like electronic shells instead of the electronic bands in bulk. These features result in a very rich and size-dependent interaction of a cluster with small molecules, governed by a fine interplay between the geometry and the electronic structure of the system. An alternative research approach uses the investigation of chemical reactions of isolated small clusters in the gas phase as model systems for the reactions taking place in more complex systems. This offers several advantages compared to more conventional methods and techniques used to study such complex systems. First, clusters can be produced under well-defined conditions, with control over size, composition, and charge state. Second, clusters in the gas phase solely interact with the molecule(s) chosen by the researcher, since contaminations are limited by the high vacuum conditions of the experiments. Third, due to the small number of atoms involved, detailed quantum chemical calculations can be performed on the systems under investigation. Thus, even though gas phase clusters differ significantly in size and in environmental conditions from those encountered, for example, in industrial catalysis, they can be used to unravel the complicated nature of a metal-molecule chemical bonding process. In this Account, both routes of investigation are discussed. The nature of the interaction between small gas phase clusters with diverse molecules is described, stressing the broader relevance of these studies. Particular emphasis is given to the effect of heteroatom doping. By adding a different element to a cluster, its geometric and electronic structure is modified, thereby altering its reactivity. Specifically, the effect of varying size and composition of doped gold, platinum, and aluminum clusters on their reactivity toward diverse molecules, relevant for catalytic applications, is discussed. Most studies presented here combine experiments based on mass spectrometric techniques with density functional theory calculations, allowing a deep understanding of the reaction mechanisms at a molecular level.

9.
Chemistry ; 23(62): 15638-15643, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28940577

RESUMO

The effect of vanadium doping on the hydrogen adsorption capacity of aluminum clusters (Aln+ , n=2-18) is studied experimentally by mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy. We find that vanadium doping enhances the reactivity of the clusters towards hydrogen, albeit in a size-dependent way. IRMPD spectra, which provide a fingerprint of the hydrogen binding geometry, show that H2 dissociates upon adsorption. Density functional theory (DFT) calculations for the smaller Aln V+ (n=2-8,10) clusters are in good agreement with the observed reactivity pattern and underline the importance of activation barriers in the chemisorption process. Orbital analysis shows that the activation barriers are due to an unfavorable overlap between cluster and hydrogen orbitals.

10.
Chemistry ; 23(17): 4120-4127, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28111816

RESUMO

The interaction of carbon monoxide with platinum alloy nanoparticles is an important problem in the context of fuel cell catalysis. In this work, molybdenum-doped platinum clusters have been studied in the gas phase to obtain a better understanding of the fundamental nature of the Pt-CO interaction in the presence of a dopant atom. For this purpose, Ptn+ and MoPtn-1+ (n=3-7) clusters were studied by combined mass spectrometry and density functional theory calculations, making it possible to investigate the effects of molybdenum doping on the reactivity of platinum clusters with CO. In addition, IR photodissociation spectroscopy was used to measure the stretching frequency of CO molecules adsorbed on Ptn+ and MoPtn-1+ (n=3-14), allowing an investigation of dopant-induced charge redistribution within the clusters. This electronic charge transfer is correlated with the observed changes in reactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...