Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 1123, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549360

RESUMO

Here, we introduce a novel concept for the fabrication of colored materials with significantly reduced dye leaching through covalent immobilization of the desired dye using plasma-generated surface radicals. This plasma dye coating (PDC) procedure immobilizes a pre-adsorbed layer of a dye functionalized with a radical sensitive group on the surface through radical addition caused by a short plasma treatment. The non-specific nature of the plasma-generated surface radicals allows for a wide variety of dyes including azobenzenes and sulfonphthaleins, functionalized with radical sensitive groups to avoid significant dye degradation, to be combined with various materials including PP, PE, PA6, cellulose, and PTFE. The wide applicability, low consumption of dye, relatively short procedure time, and the possibility of continuous PDC using an atmospheric plasma reactor make this procedure economically interesting for various applications ranging from simple coloring of a material to the fabrication of chromic sensor fabrics as demonstrated by preparing a range of halochromic materials.

2.
J Chromatogr A ; 1478: 43-49, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27914607

RESUMO

Size-exclusion chromatography (SEC) is amongst the most widely used polymer characterization methods in both academic and industrial polymer research allowing the determination of molecular weight and distribution parameters, i.e. the dispersity (Ɖ), of unknown polymers. The many advantages, including accuracy, reproducibility and low sample consumption, have contributed to the worldwide success of this analytical technique. The current generation of SEC systems have a stationary phase mostly containing highly porous, styrene-divinylbenzene particles allowing for a size-based separation of various polymers in solution but limiting the flow rate and solvent compatibility. Recently, sub-2µm ethylene-bridged hybrid (BEH) packing materials have become available for SEC analysis. These packing materials can not only withstand much higher pressures up to 15000psi but also show high spatial stability towards different solvents. Combining these BEH columns with the ultra-high performance LC (UHPLC) technology opens up UHP-SEC analysis, showing strongly reduced runtimes and unprecedented solvent compatibility. In this work, this novel characterization technique was compared to conventional SEC using both highly viscous and highly polar solvents as eluent, namely N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF) and methanol, focusing on the suitability of the BEH-columns for analysis of highly functional polymers. The results show a high functional group compatibility comparable with conventional SEC with remarkably short runtimes and enhanced resolution in methanol.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia em Gel , Polímeros/química , Solventes/química , Acetamidas/química , Dimetilformamida/química , Metanol/química , Peso Molecular , Reprodutibilidade dos Testes
3.
Sensors (Basel) ; 16(10)2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27775572

RESUMO

Boronic acid-containing (co)polymers have fascinated researchers for decades, garnering attention for their unique responsiveness toward 1,2- and 1,3-diols, including saccharides and nucleotides. The applications of materials that exert this property are manifold including sensing, but also self-regulated drug delivery systems through responsive membranes or micelles. In this review, some of the main applications of boronic acid containing (co)polymers are discussed focusing on the role of the boronic acid group in the response mechanism. We hope that this summary, which highlights the importance and potential of boronic acid-decorated polymeric materials, will inspire further research within this interesting field of responsive polymers and polymeric materials.


Assuntos
Técnicas Biossensoriais/métodos , Ácidos Borônicos/química , Sistemas de Liberação de Medicamentos/métodos , Glucose/análise , Polímeros/química
4.
J Mater Chem B ; 4(26): 4507-4516, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32263393

RESUMO

Fast-response and easy-to-visualize colorimetric nanofibrous sensors show great potential for visual and continuous control of external stimuli. This makes them applicable in many fields, including wound management, where nanofibers serve as an optimal support material. In this paper, fast responding and user-friendly biocompatible, halochromic nanofibrous sensors are successfully fabricated by incorporating the halochromic dyes Methyl Red and Rose Bengal inside a chitosan/poly(ε-caprolactone) nanofibrous matrix. The commonly applied dye-doping technique frequently suffers from dye-leaching, which not only reduces the sensor's sensitivity over time but can also induce adverse effects. Therefore, in this work, dye-immobilization is accomplished by covalent dye-modification of chitosan before blend electrospinning. It is shown that efficient dye-immobilization with minimal dye-leaching is achieved within the biomedical relevant pH-region, without significantly affecting the halochromic behavior of the dyes. This is in contrast to the commonly applied dye-doping technique and other dye-immobilization strategies stated in literature. Moreover, the nanofibers show high and reproducible pH-sensitivity by providing an instantaneous color change in response to change in pH in aqueous medium and when exposed to acidic or basic gases. The results stated within this work are of particular interest for natural (bio)polymers for which covalent modification combined with electrospinning provides a universal method for versatile dye-functionalization of large area nanofibrous membranes with proper dye-immobilization.

5.
Macromol Rapid Commun ; 35(2): 214-220, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24115213

RESUMO

Well-defined homo and mPEGylated block (co)polymers of the commercially available unprotected 4-vinylphenylboronic acid (4-VBA) monomer are reported based on reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymerization kinetics are studied in detail for homo and block (co)polymerizations with different chain transfer agents (CTAs) to optimize the preparation of well-defined polymer structures, eventually leading to comparatively low dispersities (D ≤ 1.25). Subsequently, block (co)polymers with methoxy poly(ethylene glycol) mPEG-b-P(4-VBA) are prepared using a mPEG-functionalized CTA. The formed block copolymer mPEG114 -b-P(4-VBA)30 is demonstrated to be pH and glucose responsive as its micellization behavior is dictated by pH as well as the presence of glucose. The glucose-responsive pH window of mPEG114 -b-P(4-VBA)30 is found to be pH 9-10 based on the DLS and TEM measurement.


Assuntos
Ácidos Borônicos/química , Carboidratos/análise , Micelas , Polimerização , Compostos de Vinila/química , Glucose/análise , Concentração de Íons de Hidrogênio
6.
Chem Commun (Camb) ; 49(83): 9663-5, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24022339

RESUMO

Polymeric multilayer films assembled via hydrogen-bonding are witnessing increased interest from the scientific community. Here we report on hydrogen bonded multilayers of tannic acid and neutral poly(2-oxazoline)s. Importantly we demonstrate, to the best of our knowledge, for the first time that a temperature responsive polymer, in this case poly(2-(n-propyl)-2-oxazline), can be assembled below and above its TCP with distinctly different growth mechanisms.


Assuntos
Oxazóis/química , Taninos/química , Ligação de Hidrogênio , Polipropilenos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA