Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 561(7721): 63-69, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30158707

RESUMO

Glutamine synthetase, encoded by the gene GLUL, is an enzyme that converts glutamate and ammonia to glutamine. It is expressed by endothelial cells, but surprisingly shows negligible glutamine-synthesizing activity in these cells at physiological glutamine levels. Here we show in mice that genetic deletion of Glul in endothelial cells impairs vessel sprouting during vascular development, whereas pharmacological blockade of glutamine synthetase suppresses angiogenesis in ocular and inflammatory skin disease while only minimally affecting healthy adult quiescent endothelial cells. This relies on the inhibition of endothelial cell migration but not proliferation. Mechanistically we show that in human umbilical vein endothelial cells GLUL knockdown reduces membrane localization and activation of the GTPase RHOJ while activating other Rho GTPases and Rho kinase, thereby inducing actin stress fibres and impeding endothelial cell motility. Inhibition of Rho kinase rescues the defect in endothelial cell migration that is induced by GLUL knockdown. Notably, glutamine synthetase palmitoylates itself and interacts with RHOJ to sustain RHOJ palmitoylation, membrane localization and activation. These findings reveal that, in addition to the known formation of glutamine, the enzyme glutamine synthetase shows unknown activity in endothelial cell migration during pathological angiogenesis through RHOJ palmitoylation.


Assuntos
Células Endoteliais/enzimologia , Células Endoteliais/patologia , Glutamato-Amônia Ligase/metabolismo , Glutamina/biossíntese , Neovascularização Patológica , Actinas/metabolismo , Animais , Movimento Celular , Células Endoteliais/metabolismo , Feminino , Glutamato-Amônia Ligase/deficiência , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/fisiologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipoilação , Camundongos , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional , Fibras de Estresse/metabolismo , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
3.
Cell Metab ; 28(4): 573-587.e13, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30017355

RESUMO

The role of phosphoglycerate dehydrogenase (PHGDH), a key enzyme of the serine synthesis pathway (SSP), in endothelial cells (ECs) remains poorly characterized. We report that mouse neonates with EC-specific PHGDH deficiency suffer lethal vascular defects within days of gene inactivation, due to reduced EC proliferation and survival. In addition to nucleotide synthesis impairment, PHGDH knockdown (PHGDHKD) caused oxidative stress, due not only to decreased glutathione and NADPH synthesis but also to mitochondrial dysfunction. Electron transport chain (ETC) enzyme activities were compromised upon PHGDHKD because of insufficient heme production due to cellular serine depletion, not observed in other cell types. As a result of heme depletion, elevated reactive oxygen species levels caused EC demise. Supplementation of hemin in PHGDHKD ECs restored ETC function and rescued the apoptosis and angiogenesis defects. These data argue that ECs die upon PHGDH inhibition, even without external serine deprivation, illustrating an unusual importance of serine synthesis for ECs.


Assuntos
Células Endoteliais/metabolismo , Heme/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Serina/metabolismo , Apoptose , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Suplementos Nutricionais , Técnicas de Silenciamento de Genes , Hemina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Microcefalia/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Neovascularização Fisiológica , Estresse Oxidativo , Fosfoglicerato Desidrogenase/deficiência , Biossíntese de Proteínas , Transtornos Psicomotores/metabolismo , Purinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Convulsões/metabolismo
4.
EMBO J ; 36(16): 2334-2352, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28659375

RESUMO

Endothelial cell (EC) metabolism is emerging as a regulator of angiogenesis, but the precise role of glutamine metabolism in ECs is unknown. Here, we show that depriving ECs of glutamine or inhibiting glutaminase 1 (GLS1) caused vessel sprouting defects due to impaired proliferation and migration, and reduced pathological ocular angiogenesis. Inhibition of glutamine metabolism in ECs did not cause energy distress, but impaired tricarboxylic acid (TCA) cycle anaplerosis, macromolecule production, and redox homeostasis. Only the combination of TCA cycle replenishment plus asparagine supplementation restored the metabolic aberrations and proliferation defect caused by glutamine deprivation. Mechanistically, glutamine provided nitrogen for asparagine synthesis to sustain cellular homeostasis. While ECs can take up asparagine, silencing asparagine synthetase (ASNS, which converts glutamine-derived nitrogen and aspartate to asparagine) impaired EC sprouting even in the presence of glutamine and asparagine. Asparagine further proved crucial in glutamine-deprived ECs to restore protein synthesis, suppress ER stress, and reactivate mTOR signaling. These findings reveal a novel link between endothelial glutamine and asparagine metabolism in vessel sprouting.


Assuntos
Asparagina/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Glutamina/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Meios de Cultura/química , Células Endoteliais/metabolismo , Glutaminase/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Redes e Vias Metabólicas , Neovascularização Patológica
5.
Nat Commun ; 7: 12240, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27436424

RESUMO

During vessel sprouting, endothelial cells (ECs) dynamically rearrange positions in the sprout to compete for the tip position. We recently identified a key role for the glycolytic activator PFKFB3 in vessel sprouting by regulating cytoskeleton remodelling, migration and tip cell competitiveness. It is, however, unknown how glycolysis regulates EC rearrangement during vessel sprouting. Here we report that computational simulations, validated by experimentation, predict that glycolytic production of ATP drives EC rearrangement by promoting filopodia formation and reducing intercellular adhesion. Notably, the simulations correctly predicted that blocking PFKFB3 normalizes the disturbed EC rearrangement in high VEGF conditions, as occurs during pathological angiogenesis. This interdisciplinary study integrates EC metabolism in vessel sprouting, yielding mechanistic insight in the control of vessel sprouting by glycolysis, and suggesting anti-glycolytic therapy for vessel normalization in cancer and non-malignant diseases.


Assuntos
Glicólise , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Trifosfato de Adenosina/metabolismo , Antígenos CD/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/metabolismo , Simulação por Computador , Técnicas de Silenciamento de Genes , Glicólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Indóis/farmacologia , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Piridinas/farmacologia , Pirróis/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Microcirculation ; 22(7): 509-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26250801

RESUMO

During vessel sprouting, endothelial "tip" cells migrate at the forefront, while the endothelial "stalk" cells elongate the sprout; endothelial "phalanx" cells line quiescent vessels. Tip and stalk cells can dynamically switch phenotypes under the control of VEGF and Notch signaling. Novel findings now show that in addition to signaling cascades, metabolism coregulates the formation of the new vasculature. Recent studies demonstrated that ECs rely primarily on glycolysis for ATP production, that glycolysis is further enhanced in angiogenic ECs, and that the key glycolytic regulator PFKFB3 codetermines angiogenesis by controlling the balance of tip versus stalk cells and promoting a migratory tip cell phenotype. On the other hand, FAO regulates endothelial stalk cell proliferation by providing carbon sources for biosynthetic processes, more particularly for de novo nucleotide synthesis for DNA replication. Here, we overview the current understanding of the various metabolic pathways in ECs and their impact on vessel formation in health and disease.


Assuntos
Células Endoteliais/metabolismo , Neovascularização Fisiológica/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Movimento Celular/fisiologia , Replicação do DNA/fisiologia , Células Endoteliais/citologia , Glicólise/fisiologia , Humanos , Fosfofrutoquinase-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...