Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 210(8): 1311-8, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24737798

RESUMO

Lactate is an abundant metabolite, produced by host tissues and commensal organisms, and it represents an important potential carbon source for bacterial pathogens. In the case of Neisseria spp., the importance of the lactate permease in colonization of the host has been demonstrated, but there have been few studies of lactate metabolism in pathogenic Neisseria in the postgenomic era. We describe herein the characterization of genome-annotated, respiratory, and substrate-level lactate dehydrogenases (LDHs) from the obligate human pathogen Neisseria gonorrhoeae. Biochemical assays using N. gonorrhoeae 1291 wild type and isogenic mutant strains showed that cytoplasmic LdhA (NAD(+)-dependent D-lactate dehydrogenase) and the membrane-bound respiratory enzymes, LdhD (D-lactate dehydrogenase) and LldD (L-lactate dehydrogenase) are correctly annotated. Mutants lacking LdhA and LdhD showed greatly reduced survival in neutrophils compared with wild type cells, highlighting the importance of D-lactate metabolism in gonococcal survival. Furthermore, an assay of host colonization using the well-established human primary cervical epithelial cell model revealed that the two respiratory enzymes make a significant contribution to colonization of and survival within the microaerobic environment of the host. Taken together, these data suggest that host-derived lactate is critical for the growth and survival of N. gonorrhoeae in human cells.


Assuntos
Colo do Útero/citologia , Células Epiteliais/microbiologia , Lactato Desidrogenases/metabolismo , Neisseria gonorrhoeae/enzimologia , Neutrófilos/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Lactato Desidrogenases/genética , Mutação
2.
J Bacteriol ; 195(11): 2632-41, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23564168

RESUMO

NtrYX is a sensor-histidine kinase/response regulator two-component system that has had limited characterization in a small number of Alphaproteobacteria. Phylogenetic analysis of the response regulator NtrX showed that this two-component system is extensively distributed across the bacterial domain, and it is present in a variety of Betaproteobacteria, including the human pathogen Neisseria gonorrhoeae. Microarray analysis revealed that the expression of several components of the respiratory chain was reduced in an N. gonorrhoeae ntrX mutant compared to that in the isogenic wild-type (WT) strain 1291. These included the cytochrome c oxidase subunit (ccoP), nitrite reductase (aniA), and nitric oxide reductase (norB). Enzyme activity assays showed decreased cytochrome oxidase and nitrite reductase activities in the ntrX mutant, consistent with microarray data. N. gonorrhoeae ntrX mutants had reduced capacity to survive inside primary cervical cells compared to the wild type, and although they retained the ability to form a biofilm, they exhibited reduced survival within the biofilm compared to wild-type cells, as indicated by LIVE/DEAD staining. Analyses of an ntrX mutant in a representative alphaproteobacterium, Rhodobacter capsulatus, showed that cytochrome oxidase activity was also reduced compared to that in the wild-type strain SB1003. Taken together, these data provide evidence that the NtrYX two-component system may be a key regulator in the expression of respiratory enzymes and, in particular, cytochrome c oxidase, across a wide range of proteobacteria, including a variety of bacterial pathogens.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Neisseria gonorrhoeae/enzimologia , Nitrito Redutases/genética , Rhodobacter capsulatus/enzimologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Colo do Útero/microbiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células Epiteliais/microbiologia , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Gonorreia/microbiologia , Humanos , Viabilidade Microbiana , Neisseria gonorrhoeae/genética , Nitrito Redutases/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredutases/metabolismo , Oxigênio/metabolismo , Filogenia , RNA Bacteriano/genética , Rhodobacter capsulatus/genética , Deleção de Sequência
3.
Infect Immun ; 77(9): 3522-32, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19528210

RESUMO

Neisseria gonorrhoeae, the etiologic agent of gonorrhea, is frequently asymptomatic in women, often leading to chronic infections. One factor contributing to this may be biofilm formation. N. gonorrhoeae can form biofilms on glass and plastic surfaces. There is also evidence that biofilm formation may occur during natural cervical infection. To further study the mechanism of gonococcal biofilm formation, we compared transcriptional profiles of N. gonorrhoeae biofilms to planktonic profiles. Biofilm RNA was extracted from N. gonorrhoeae 1291 grown for 48 h in continuous-flow chambers over glass. Planktonic RNA was extracted from the biofilm runoff. In comparing biofilm with planktonic growth, 3.8% of the genome was differentially regulated. Genes that were highly upregulated in biofilms included aniA, norB, and ccp. These genes encode enzymes that are central to anaerobic respiratory metabolism and stress tolerance. Downregulated genes included members of the nuo gene cluster, which encodes the proton-translocating NADH dehydrogenase. Furthermore, it was observed that aniA, ccp, and norB insertional mutants were attenuated for biofilm formation on glass and transformed human cervical epithelial cells. These data suggest that biofilm formation by the gonococcus may represent a response that is linked to the control of nitric oxide steady-state levels during infection of cervical epithelial cells.


Assuntos
Biofilmes/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Neisseria gonorrhoeae/fisiologia , Anaerobiose , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Células Cultivadas , Citocromo-c Peroxidase/genética , Feminino , Humanos , Neisseria gonorrhoeae/genética , Óxido Nítrico/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Consumo de Oxigênio , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Infect Immun ; 76(8): 3569-76, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18426887

RESUMO

mntABC from Neisseria gonorrhoeae encodes an ABC permease which includes a periplasmic divalent cation binding receptor protein of the cluster IX family, encoded by mntC. Analysis of an mntC mutant showed that growth of N. gonorrhoeae could be stimulated by addition of either manganese(II) or zinc(II) ions, suggesting that the MntABC system could transport both ions. In contrast, growth of the mntAB mutant in liquid culture was possible only when the medium was supplemented with an antioxidant such as mannitol, consistent with the view that ion transport via MntABC is essential for protection of N. gonorrhoeae against oxidative stress. Using recombinant MntC, we determined that MntC binds Zn(2+) and Mn(2+) with almost equal affinity (dissociation constant of approximately 0.1 microM). Competition assays with the metallochromic zinc indicator 4-(2-pyridylazo)resorcinol showed that MntC binds Mn(2+) and Zn(2+) at the same binding site. Analysis of the N. gonorrhoeae genome showed that MntC is the only Mn/Zn metal binding receptor protein cluster IX in this bacterium, in contrast to the situation in many other bacteria which have systems with dedicated Mn and Zn binding proteins as part of distinctive ABC cassette permeases. Both the mntC and mntAB mutants had reduced intracellular survival in a human cervical epithelial cell model and showed reduced ability to form a biofilm. These data suggest that the MntABC transporter is of importance for survival of Neisseria gonorrhoeae in the human host.


Assuntos
Proteínas de Bactérias/metabolismo , Cátions Bivalentes/metabolismo , Colo do Útero/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Metais/metabolismo , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/patogenicidade , Proteínas de Bactérias/genética , Sítios de Ligação , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Colo do Útero/citologia , Células Epiteliais/microbiologia , Feminino , Humanos , Cinética , Proteínas de Membrana Transportadoras/genética , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/crescimento & desenvolvimento , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo
5.
Biochim Biophys Acta ; 1767(2): 189-96, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17306216

RESUMO

Arsenite oxidation by the facultative chemolithoautotroph NT-26 involves a periplasmic arsenite oxidase. This enzyme is the first component of an electron transport chain which leads to reduction of oxygen to water and the generation of ATP. Involved in this pathway is a periplasmic c-type cytochrome that can act as an electron acceptor to the arsenite oxidase. We identified the gene that encodes this protein downstream of the arsenite oxidase genes (aroBA). This protein, a cytochrome c(552), is similar to a number of c-type cytochromes from the alpha-Proteobacteria and mitochondria. It was therefore not surprising that horse heart cytochrome c could also serve, in vitro, as an alternative electron acceptor for the arsenite oxidase. Purification and characterisation of the c(552) revealed the presence of a single heme per protein and that the heme redox potential is similar to that of mitochondrial c-type cytochromes. Expression studies revealed that synthesis of the cytochrome c gene was not dependent on arsenite as was found to be the case for expression of aroBA.


Assuntos
Alphaproteobacteria/química , Arsenitos/metabolismo , Grupo dos Citocromos c/fisiologia , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Clonagem Molecular , Grupo dos Citocromos c/química , Grupo dos Citocromos c/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Oxirredução , Oxirredutases/metabolismo
6.
J Mol Biol ; 359(1): 66-75, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16616188

RESUMO

The overexpression of LIM-only protein 2 (LMO2) in T-cells, as a result of chromosomal translocations, retroviral insertion during gene therapy, or in transgenic mice models, leads to the onset of T-cell leukemias. LMO2 comprises two protein-binding LIM domains that allow LMO2 to interact with multiple protein partners, including LIM domain-binding protein 1 (Ldb1, also known as CLIM2 and NLI), an essential cofactor for LMO proteins. Sequestration of Ldb1 by LMO2 in T-cells may prevent it binding other key partners, such as LMO4. Here, we show using protein engineering and enzyme-linked immunosorbent assay (ELISA) methodologies that LMO2 binds Ldb1 with a twofold lower affinity than does LMO4. Thus, excess LMO2 rather than an intrinsically higher binding affinity would lead to sequestration of Ldb1. Both LIM domains of LMO2 are required for high-affinity binding to Ldb1 (K(D) = 2.0 x 10(-8) M). However, the first LIM domain of LMO2 is primarily responsible for binding to Ldb1 (K(D) = 2.3 x 10(-7) M), whereas the second LIM domain increases binding by an order of magnitude. We used mutagenesis in combination with yeast two-hybrid analysis, and phage display selection to identify LMO2-binding "hot spots" within Ldb1 that locate to the LIM1-binding region. The delineation of this region reveals some specific differences when compared to the equivalent LMO4:Ldb1 interaction that hold promise for the development of reagents to specifically bind LMO2 in the treatment of leukemia.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Metaloproteínas/química , Metaloproteínas/metabolismo , Conformação Proteica , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas com Domínio LIM , Proteínas com Homeodomínio LIM , Metaloproteínas/genética , Camundongos , Modelos Moleculares , Ligação Proteica , Proteínas Proto-Oncogênicas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
7.
Biochim Biophys Acta ; 1656(2-3): 148-55, 2004 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-15178476

RESUMO

Heterotrophic arsenite oxidation by Hydrogenophaga sp. str. NT-14 is coupled to the reduction of oxygen and appears to yield energy for growth. Purification and partial characterization of the arsenite oxidase revealed that it (1). contains two heterologous subunits, AroA (86 kDa) and AroB (16 kDa), (2). has a native molecular mass of 306 kDa suggesting an alpha(3)beta(3) configuration, and (3). contains molybdenum and iron as cofactors. Although the Hydrogenophaga sp. str. NT-14 arsenite oxidase shares similarities to the arsenite oxidases purified from NT-26 and Alcaligenes faecalis, it differs with respect to activity and overall conformation. A c-551-type cytochrome was purified from Hydrogenophaga sp. str. NT-14 and appears to be the physiological electron acceptor for the arsenite oxidase. The cytochrome can also accept electrons from the purified NT-26 arsenite oxidase. A hypothetical electron transport chain for heterotrophic arsenite oxidation is proposed.


Assuntos
Comamonadaceae/enzimologia , Citocromos c/fisiologia , Oxirredutases/metabolismo , Sequência de Aminoácidos , Citocromos c/química , Citocromos c/isolamento & purificação , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Ferro/química , Dados de Sequência Molecular , Peso Molecular , Molibdênio/química , Oxirredução , Oxirredutases/química , Oxirredutases/isolamento & purificação , Oxigênio/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
8.
J Bacteriol ; 186(6): 1614-9, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14996791

RESUMO

The chemolithoautotroph NT-26 oxidizes arsenite to arsenate by using a periplasmic arsenite oxidase. Purification and preliminary characterization of the enzyme revealed that it (i) contains two heterologous subunits, AroA (98 kDa) and AroB (14 kDa); (ii) has a native molecular mass of 219 kDa, suggesting an alpha2beta2 configuration; and (iii) contains two molybdenum and 9 or 10 iron atoms per alpha2beta2 unit. The genes that encode the enzyme have been cloned and sequenced. Sequence analyses revealed similarities to the arsenite oxidase of Alcaligenes faecalis, the putative arsenite oxidase of the beta-proteobacterium ULPAs1, and putative proteins of Aeropyrum pernix, Sulfolobus tokodaii, and Chloroflexus aurantiacus. Interestingly, the AroA subunit was found to be similar to the molybdenum-containing subunits of enzymes in the dimethyl sulfoxide reductase family, whereas the AroB subunit was found to be similar to the Rieske iron-sulfur proteins of cytochrome bc1 and b6f complexes. The NT-26 arsenite oxidase is probably exported to the periplasm via the Tat secretory pathway, with the AroB leader sequence used for export. Confirmation that NT-26 obtains energy from the oxidation of arsenite was obtained, as an aroA mutant was unable to grow chemolithoautotrophically with arsenite. This mutant could grow heterotrophically in the presence of arsenite; however, the arsenite was not oxidized to arsenate.


Assuntos
Alphaproteobacteria/enzimologia , Bactérias Gram-Negativas Quimiolitotróficas/enzimologia , Molibdênio/química , Oxirredutases , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Sequência de Aminoácidos , Arsenitos/metabolismo , Bactérias Gram-Negativas Quimiolitotróficas/genética , Bactérias Gram-Negativas Quimiolitotróficas/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutagênese Insercional , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/isolamento & purificação , Oxirredutases/metabolismo , Periplasma/enzimologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...