Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone Rep ; 17: 101621, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36159882

RESUMO

Osteopontin (OPN) and Bone Sialoprotein (BSP) are co-expressed in bone and display overlapping and complementary physiological properties. Both genes show a rapid expression response to mechanical stimulation. We used mice with single and double deletions (DKO) of BSP and OPN to assess the specificity of their roles in skeletal adaptation to loading. Two-month-old Wild-Type (WT), BSP knockout (BSP-/-), OPN-/- and DKO male mice were submitted to two mechanical stimulation regimen (n = 10 mice/group) respectively impacting trabecular bone (Hypergravity, HG) and cortical bone (Whole Body Vibration, WBV). HG increased trabecular bone volume (BV/TV) in WT femur through reduced resorption, and in BSP-/- mice femur and vertebra through increased bone formation. In contrast, HG increased the turnover of OPN-/- bone, resulting in reduced femur and vertebra BV/TV. HG did not affect DKO bones. Similarly, WBV increased cortical thickness in BSP-/- mice and decreased it in OPN-/-, without affecting structurally WT and DKO bone. Vibrated BSP-/- mice displayed increased endocortical bone formation with a drop in Sclerostin expression, and reduced periosteal osteoclasts with lower Rankl and Cathepsin K expression. In contrast, vibrated OPN-/- endocortical bone displayed decreased formation and increased osteoclast coverage. Therefore, under two regimen (HG and WBV) targeting distinct bone compartments, absence of OPN resulted in bone loss while lack of BSP induced bone gain, reflecting divergent structural adaptations. Strikingly, absence of both proteins led to a relative insensitivity to either mechanical challenge. Interplay between OPN and BSP thus appears as a key element of skeletal response to mechanical stimulation.

2.
Bone ; 120: 411-422, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30529011

RESUMO

The two SIBLING (Small Integrin Binding Ligand N-linked Glycoproteins), bone sialoprotein (BSP) and osteopontin (OPN) are expressed in osteoblasts and osteoclasts. In mature BSP knockout (KO, -/-) mice, both bone formation and resorption as well as mineralization are impaired. OPN-/- mice display impaired resorption, and OPN is described as an inhibitor of mineralization. However, OPN is overexpressed in BSP-/- mice, complicating the understanding of their phenotype. We have generated and characterized mice with a double KO (DKO) of OPN and BSP, to try and unravel their respective contributions. Despite the absence of OPN, DKO bones are still hypomineralized. The SIBLING, matrix extracellular phosphoglycoprotein with ASARM motif (MEPE) is highly overexpressed in both BSP-/- and DKO and may impair mineralization through liberation of its ASARM (Acidic Serine-Aspartate Rich MEPE associated) peptides. DKO mice also display evidence of active formation of trabecular, secondary bone as well as primary bone in the marrow-ablation repair model. A higher number of osteoclasts form in DKO marrow cultures, with higher resorption activity, and DKO long bones display a localized and conspicuous cortical macroporosity. High bone formation and resorption parameters, and high cortical porosity in DKO mice suggest an active bone modeling/remodeling, in the absence of two key regulators of bone cell performance. This first double KO of SIBLING proteins thus results in a singular, non-trivial phenotype leading to reconsider the interpretation of each single KO, concerning in particular matrix mineralization and the regulation of bone cell activity.


Assuntos
Remodelação Óssea/fisiologia , Osso e Ossos/fisiopatologia , Calcificação Fisiológica/fisiologia , Deleção de Genes , Sialoproteína de Ligação à Integrina/deficiência , Osteopontina/deficiência , Animais , Biomarcadores/metabolismo , Medula Óssea/patologia , Matriz Óssea/fisiopatologia , Osso Esponjoso/fisiopatologia , Diferenciação Celular , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Sialoproteína de Ligação à Integrina/metabolismo , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Osteopontina/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...