Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558434

RESUMO

Most ovarian carcinoma (OvCa) patients present with advanced disease at the time of diagnosis. Malignant, metastatic OvCa is invasive and has poor prognosis, exposing the need for improved therapeutic targeting. High CD47 (OvCa) and SIRPα (macrophage) expression has been linked to decreased survival, making this interaction a significant target for therapeutic discovery. Even so, previous attempts have fallen short, limited by CD47 antibody specificity and efficacy. Macrophages are an important component of the OvCa tumor microenvironment and are manipulated to aid in cancer progression via CD47-SIRPα signaling. Thus, we have leveraged lipid-based nanoparticles (LNPs) to design a therapy uniquely situated to home to phagocytic macrophages expressing the SIRPα protein in metastatic OvCa. CD47-SIRPα presence was evaluated in patient histological sections using immunohistochemistry. 3D tumor spheroids generated on a hanging drop array with OVCAR3 high-grade serous OvCa and THP-1-derived macrophages created a representative model of cellular interactions involved in metastatic OvCa. Microfluidic techniques were employed to generate LNPs encapsulating SIRPα siRNA (siSIRPα) to affect the CD47-SIRPα signaling between the OvCa and macrophages. siSIRPα LNPs were characterized for optimal size, charge, and encapsulation efficiency. Uptake of the siSIRPα LNPs by macrophages was assessed by Incucyte. Following 48 h of 25 nM siSIRPα treatment, OvCa/macrophage heterospheroids were evaluated for SIRPα knockdown, platinum chemoresistance, and invasiveness. OvCa patient tumors and in vitro heterospheroids expressed CD47 and SIRPα. Macrophages in OvCa spheroids increased carboplatin resistance and invasion, indicating a more malignant phenotype. We observed successful LNP uptake by macrophages causing significant reduction in SIRPα gene and protein expressions and subsequent reversal of pro-tumoral alternative activation. Disrupting CD47-SIRPα interactions resulted in sensitizing OvCa/macrophage heterospheroids to platinum chemotherapy and reversal of cellular invasion outside of heterospheroids. Ultimately, our results strongly indicate the potential of using LNP-based nanoimmunotherapy to reduce malignant progression of ovarian cancer.

2.
J Biomed Mater Res B Appl Biomater ; 112(2): e35385, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345190

RESUMO

Insufficient healing of aneurysms following treatment with vascular occlusion devices put patients at severe risk of fatal rupture. Therefore, promoting healing and not just occlusion is vital to enhance aneurysm healing. Following occlusion device implantation, healing is primarily orchestrated by macrophage immune cells, ending with fibroblasts depositing collagen to stabilize the aneurysm neck and dome, preventing rupture. Several modified occlusion devices are available currently on-market. Previous in vivo work demonstrated that modifications of occlusion devices with a shape memory polymer foam had enhanced aneurysm healing outcomes. To better understand cellular response to occlusion devices and improve aneurysm occlusion device design variables, we developed an in vitro assay to isolate prominent interactions between devices and key healing players: macrophages and fibroblasts. We used THP-1 monocyte derived macrophages and human dermal fibroblasts in our cell culture models. Macrophages were allowed device contact with on-market competitor aneurysm occlusion devices for up to 96 h, to allow for any spontaneous device-driven macrophage activation. Macrophage secreted factors were captured in the culture media, in response to device-specific activation. Fibroblasts were then exposed to device-conditioned macrophage media (with secreted factors alone), to determine if there were any device-induced changes in collagen secretion. Our in vitro studies were designed to test the direct effect of devices on macrophage activation, and the indirect effect of devices on collagen secretion by fibroblasts to promote aneurysm healing and stabilization. Over 96 h, macrophages displayed significant migration toward and interaction with all tested devices. As compared to other devices, shape memory polymer foams (SMM, Shape Memory Medical) induced significant changes in gene expression indicating a shift toward an anti-inflammatory pro-healing M2-like phenotype. Similarly, macrophages in contact with SMM devices secreted more vascular endothelial growth factor (VEGF) compared with other devices. Macrophage conditioned media from SMM-contacted macrophages actively promoted fibroblast secretion of collagen, comparable to amounts observed with exogenous stimulation via VEGF supplementation. Our data indicate that SMM devices may promote good aneurysm healing outcomes, because collagen production is an essential step to ultimately stabilize an aneurysm.


Assuntos
Aneurisma , Materiais Inteligentes , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Macrófagos/metabolismo , Aneurisma/terapia , Colágeno/metabolismo , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Materiais Inteligentes/metabolismo , Fibroblastos
3.
Front Oncol ; 13: 1200436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746303

RESUMO

Introduction: We have previously shown that an intratumoral (IT) injection of the hu14.18-IL2 immunocytokine (IC), an anti-GD2 antibody linked to interleukin 2, can serve as an in situ vaccine and synergize with local radiotherapy (RT) to induce T cell-mediated antitumor effects. We hypothesized that cyclophosphamide (CY), a chemotherapeutic agent capable of depleting T regulatory cells (Tregs), would augment in situ vaccination. GD2+ B78 mouse melanoma cells were injected intradermally in syngeneic C57BL/6 mice. Methods: Treatments with RT (12Gy) and/or CY (100 mg/kg i.p.) started when tumors reached 100-300 mm3 (day 0 of treatment), followed by five daily injections of IT-IC (25 mcg) on days 5-9. Tumor growth and survival were followed. In addition, tumors were analyzed by flow cytometry. Results: Similar to RT, CY enhanced the antitumor effect of IC. The strongest antitumor effect was achieved when CY, RT and IC were combined, as compared to combinations of IC+RT or IC+CY. Flow cytometric analyses showed that the combined treatment with CY, RT and IC decreased Tregs and increased the ratio of CD8+ cells/Tregs within the tumors. Moreover, in mice bearing two separate tumors, the combination of RT and IT-IC delivered to one tumor, together with systemic CY, led to a systemic antitumor effect detected as shrinkage of the tumor not treated directly with RT and IT-IC. Cured mice developed immunological memory as they were able to reject B78 tumor rechallenge. Conclusion: Taken together, these preclinical results show that CY can augment the antitumor efficacy of IT- IC, given alone or in combination with local RT, suggesting potential benefit in clinical testing of these combinations.

4.
Sci Adv ; 9(26): eadf2860, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390209

RESUMO

Cell cycle dysregulation is prerequisite for cancer formation. However, it is unknown whether the mode of dysregulation affects disease characteristics. Here, we conduct comprehensive analyses of cell cycle checkpoint dysregulation using patient data and experimental investigations. We find that ATM mutation predisposes the diagnosis of primary estrogen receptor (ER)+/human epidermal growth factor (HER)2- cancer in older women. Conversely, CHK2 dysregulation induces formation of metastatic, premenopausal ER+/HER2- breast cancer (P = 0.001) that is treatment-resistant (HR = 6.15, P = 0.01). Lastly, while mutations in ATR alone are rare, ATR/TP53 co-mutation is 12-fold enriched over expected in ER+/HER2- disease (P = 0.002) and associates with metastatic progression (HR = 2.01, P = 0.006). Concordantly, ATR dysregulation induces metastatic phenotypes in TP53 mutant, not wild-type, cells. Overall, we identify mode of cell cycle dysregulation as a distinct event that determines subtype, metastatic potential, and treatment responsiveness, providing rationale for reconsidering diagnostic classification through the lens of the mode of cell cycle dysregulation..


Assuntos
Neoplasias da Mama , Humanos , Feminino , Idoso , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Fator de Crescimento Epidérmico , Ciclo Celular/genética , Divisão Celular , Mutação , Receptores de Estrogênio
5.
Biomaterials ; 292: 121912, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36434829

RESUMO

Stress urinary incontinence (SUI) is characterized by the involuntary loss of urine due to increased intra-abdominal pressure during coughing, sneezing, or exercising. SUI affects 20-40% of the female population and is exacerbated by aging. Severe SUI is commonly treated with surgical implantation of an autologous or a synthetic sling underneath the urethra for support. These slings, however, are static, and their tension cannot be non-invasively adjusted, if needed, after implantation. This study reports the fabrication of a novel device based on liquid crystal elastomers (LCEs) capable of changing shape in response to temperature increase induced by transcutaneous IR light. The shape change of the LCE-based device was characterized in a scar tissue phantom model. An in vitro urinary tract model was designed to study the efficacy of the LCE-based device to support continence and adjust sling tension with IR illumination. Finally, the device was acutely implanted and tested for induced tension changes in female multiparous New Zealand white rabbits. The LCE device achieved 5.6% ± 1.1% actuation when embedded in an agar gel with an elastic modulus of 100 kPa. The corresponding device temperature was 44.9 °C ± 0.4 °C, and the surrounding agar temperature stayed at 42.1 °C ± 0.4 °C. Leaking time in the in vitro urinary tract model significantly decreased (p < 0.0001) when an LCE-based cuff was sutured around the model urethra from 5.2min ± 1min to 2min ±0.5min when the cuff was illuminated with IR light. Normalized leak point force (LPF) increased significantly (p = 0.01) with the implantation of an LCE-CB cuff around the bladder neck of multiparous rabbits. It decreased significantly (p = 0.023) when the device was actuated via IR light illumination. These results demonstrate that LCE material could be used to fabricate a dynamic device for treating SUI in women.


Assuntos
Cristais Líquidos , Slings Suburetrais , Incontinência Urinária por Estresse , Feminino , Coelhos , Animais , Incontinência Urinária por Estresse/terapia , Uretra/cirurgia , Elastômeros , Ágar
6.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077371

RESUMO

Ovarian cancer (OvCa) is one of the leading causes of mortality globally with an overall 5-year survival of 47%. The predominant subtype of OvCa is epithelial carcinoma, which can be highly aggressive. This review launches with a summary of the clinical features of OvCa, including staging and current techniques for diagnosis and therapy. Further, the important role of proteases in OvCa progression and dissemination is described. Proteases contribute to tumor angiogenesis, remodeling of extracellular matrix, migration and invasion, major processes in OvCa pathology. Multiple proteases, such as metalloproteinases, trypsin, cathepsin and others, are overexpressed in the tumor tissue. Presence of these catabolic enzymes in OvCa tissue can be exploited for improving early diagnosis and therapeutic options in advanced cases. Nanomedicine, being on the interface of molecular and cellular scales, can be designed to be activated by proteases in the OvCa microenvironment. Various types of protease-enabled nanomedicines are described and the studies that focus on their diagnostic, therapeutic and theranostic potential are reviewed.


Assuntos
Nanomedicina , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Endopeptidases , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Microambiente Tumoral
7.
Soft Matter ; 18(31): 5791-5806, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894795

RESUMO

Metastatic cancers are chemoresistant, involving complex interplay between disseminated cancer cell aggregates and the distant organ microenvironment (extracellular matrix and stromal cells). Conventional metastasis surrogates (scratch/wound healing, Transwell migration assays) lack 3D architecture and ECM presence. Metastasis studies can therefore significantly benefit from biomimetic 3D in vitro models recapitulating the complex cascade of distant organ invasion and colonization by collective clusters of cells. We aimed to engineer reproducible and quantifiable 3D models of highly therapy-resistant cancer processes: (i) colorectal cancer liver metastasis; and (ii) breast cancer lung metastasis. Metastatic seeds are engineered using 3D tumor spheroids to recapitulate the 3D aggregation of cancer cells both in the tumor and in circulation throughout the metastatic cascade of many cancers. Metastatic soil was engineered by decellularizing porcine livers and lungs to generate biomatrix scaffolds, followed by extensive materials characterization. HCT116 colorectal and MDA-MB-231 breast cancer spheroids were generated on hanging drop arrays to initiate clustered metastatic seeding into liver and lung biomatrix scaffolds, respectively. Between days 3-7, biomatrix cellular colonization was apparent with increased metabolic activity and the presence of cellular nests evaluated via multiphoton microscopy. HCT116 and MDA-MB-231 cells colonized liver and lung biomatrices, and at least 15% of the cells invaded more than 20 µm from the surface. Engineered metastases also expressed increased signatures of genes associated with the metastatic epithelial to mesenchymal transition (EMT). Importantly, inhibition of matrix metalloproteinase-9 inhibited metastatic invasion into the biomatrix. Furthermore, metastatic nests were significantly more chemoresistant (>3 times) to the anti-cancer drug oxaliplatin, compared to 3D spheroids. Together, our data indicated that HCT116 and MDA-MB-231 spheroids invade, colonize, and proliferate in livers and lungs establishing metastatic nests in 3D settings in vitro. The metastatic nature of these cells was confirmed with functional readouts regarding EMT and chemoresistance. Modeling the dynamic metastatic cascade in vitro has potential to identify therapeutic targets to treat or prevent metastatic progression in chemoresistant metastatic cancers.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Suínos , Microambiente Tumoral
8.
J Immunother Cancer ; 7(1): 344, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31810498

RESUMO

BACKGROUND: Unlike some adult cancers, most pediatric cancers are considered immunologically cold and generally less responsive to immunotherapy. While immunotherapy has already been incorporated into standard of care treatment for pediatric patients with high-risk neuroblastoma, overall survival remains poor. In a mouse melanoma model, we found that radiation and tumor-specific immunocytokine generate an in situ vaccination response in syngeneic mice bearing large tumors. Here, we tested whether a novel immunotherapeutic approach utilizing radiation and immunocytokine together with innate immune stimulation could generate a potent antitumor response with immunologic memory against syngeneic murine neuroblastoma. METHODS: Mice bearing disialoganglioside (GD2)-expressing neuroblastoma tumors (either NXS2 or 9464D-GD2) were treated with radiation and immunotherapy (including anti-GD2 immunocytokine with or without anti-CTLA-4, CpG and anti-CD40 monoclonal antibody). Tumor growth, animal survival and immune cell infiltrate were analyzed in the tumor microenvironment in response to various treatment regimens. RESULTS: NXS2 had a moderate tumor mutation burden (TMB) while N-MYC driven 9464D-GD2 had a low TMB, therefore the latter served as a better model for high-risk neuroblastoma (an immunologically cold tumor). Radiation and immunocytokine induced a potent in situ vaccination response against NXS2 tumors, but not in the 9464D-GD2 tumor model. Addition of checkpoint blockade with anti-CTLA-4 was not effective alone against 9464D-GD2 tumors; inclusion of CpG and anti-CD40 achieved a potent antitumor response with decreased T regulatory cells within the tumors and induction of immunologic memory. CONCLUSIONS: These data suggest that a combined innate and adaptive immunotherapeutic approach can be effective against immunologically cold syngeneic murine neuroblastoma. Further testing is needed to determine how these concepts might translate into development of more effective immunotherapeutic approaches for the treatment of clinically high-risk neuroblastoma.


Assuntos
Imunidade Adaptativa , Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Imunidade Inata , Neuroblastoma/etiologia , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Memória Imunológica , Camundongos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...